MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucidcl Structured version   Visualization version   GIF version

Theorem fucidcl 17229
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucidcl.q 𝑄 = (𝐶 FuncCat 𝐷)
fucidcl.n 𝑁 = (𝐶 Nat 𝐷)
fucidcl.x 1 = (Id‘𝐷)
fucidcl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
fucidcl (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))

Proof of Theorem fucidcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucidcl.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2 funcrcl 17127 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simprd 498 . . . . . 6 (𝜑𝐷 ∈ Cat)
5 eqid 2821 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
6 fucidcl.x . . . . . . 7 1 = (Id‘𝐷)
75, 6cidfn 16944 . . . . . 6 (𝐷 ∈ Cat → 1 Fn (Base‘𝐷))
84, 7syl 17 . . . . 5 (𝜑1 Fn (Base‘𝐷))
9 dffn2 6510 . . . . 5 ( 1 Fn (Base‘𝐷) ↔ 1 :(Base‘𝐷)⟶V)
108, 9sylib 220 . . . 4 (𝜑1 :(Base‘𝐷)⟶V)
11 eqid 2821 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
12 relfunc 17126 . . . . . 6 Rel (𝐶 Func 𝐷)
13 1st2ndbr 7735 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1412, 1, 13sylancr 589 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1511, 5, 14funcf1 17130 . . . 4 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
16 fcompt 6889 . . . 4 (( 1 :(Base‘𝐷)⟶V ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
1710, 15, 16syl2anc 586 . . 3 (𝜑 → ( 1 ∘ (1st𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))))
18 eqid 2821 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
194adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2015ffvelrnda 6845 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
215, 18, 6, 19, 20catidcl 16947 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2221ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
23 fvex 6677 . . . . 5 (Base‘𝐶) ∈ V
24 mptelixpg 8493 . . . . 5 ((Base‘𝐶) ∈ V → ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥))))
2523, 24ax-mp 5 . . . 4 ((𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐶)( 1 ‘((1st𝐹)‘𝑥)) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2622, 25sylibr 236 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ( 1 ‘((1st𝐹)‘𝑥))) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
2717, 26eqeltrd 2913 . 2 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)))
284adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝐷 ∈ Cat)
29 simpr1 1190 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑥 ∈ (Base‘𝐶))
3029, 20syldan 593 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
31 eqid 2821 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
3215adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
33 simpr2 1191 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑦 ∈ (Base‘𝐶))
3432, 33ffvelrnd 6846 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
35 eqid 2821 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
3614adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
3711, 35, 18, 36, 29, 33funcf2 17132 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
38 simpr3 1192 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
3937, 38ffvelrnd 6846 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
405, 18, 6, 28, 30, 31, 34, 39catlid 16948 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
415, 18, 6, 28, 30, 31, 34, 39catrid 16949 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))) = ((𝑥(2nd𝐹)𝑦)‘𝑓))
4240, 41eqtr4d 2859 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
43 fvco3 6754 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4432, 33, 43syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑦) = ( 1 ‘((1st𝐹)‘𝑦)))
4544oveq1d 7165 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (( 1 ‘((1st𝐹)‘𝑦))(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)))
46 fvco3 6754 . . . . . 6 (((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑥 ∈ (Base‘𝐶)) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4732, 29, 46syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (( 1 ∘ (1st𝐹))‘𝑥) = ( 1 ‘((1st𝐹)‘𝑥)))
4847oveq2d 7166 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))( 1 ‘((1st𝐹)‘𝑥))))
4942, 45, 483eqtr4d 2866 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) → ((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
5049ralrimivvva 3192 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))
51 fucidcl.n . . 3 𝑁 = (𝐶 Nat 𝐷)
5251, 11, 35, 18, 31, 1, 1isnat2 17212 . 2 (𝜑 → (( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹) ↔ (( 1 ∘ (1st𝐹)) ∈ X𝑥 ∈ (Base‘𝐶)(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑥)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)((( 1 ∘ (1st𝐹))‘𝑦)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑦))((𝑥(2nd𝐹)𝑦)‘𝑓)) = (((𝑥(2nd𝐹)𝑦)‘𝑓)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑥)⟩(comp‘𝐷)((1st𝐹)‘𝑦))(( 1 ∘ (1st𝐹))‘𝑥)))))
5327, 50, 52mpbir2and 711 1 (𝜑 → ( 1 ∘ (1st𝐹)) ∈ (𝐹𝑁𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cop 4566   class class class wbr 5058  cmpt 5138  ccom 5553  Rel wrel 5554   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Xcixp 8455  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930   Func cfunc 17118   Nat cnat 17205   FuncCat cfuc 17206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-ixp 8456  df-cat 16933  df-cid 16934  df-func 17122  df-nat 17207
This theorem is referenced by:  fuclid  17230  fucrid  17231  fuccatid  17233
  Copyright terms: Public domain W3C validator