MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fulloppc Structured version   Visualization version   GIF version

Theorem fulloppc 17194
Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fulloppc.o 𝑂 = (oppCat‘𝐶)
fulloppc.p 𝑃 = (oppCat‘𝐷)
fulloppc.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
Assertion
Ref Expression
fulloppc (𝜑𝐹(𝑂 Full 𝑃)tpos 𝐺)

Proof of Theorem fulloppc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fulloppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 fulloppc.p . . 3 𝑃 = (oppCat‘𝐷)
3 fulloppc.f . . . 4 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
4 fullfunc 17178 . . . . 5 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
54ssbri 5113 . . . 4 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
63, 5syl 17 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 6funcoppc 17147 . 2 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
8 eqid 2823 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2823 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2823 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
113adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Full 𝐷)𝐺)
12 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13fullfo 17184 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
15 forn 6595 . . . . 5 ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) → ran (𝑦𝐺𝑥) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
1614, 15syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑦𝐺𝑥) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
17 ovtpos 7909 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
1817rneqi 5809 . . . 4 ran (𝑥tpos 𝐺𝑦) = ran (𝑦𝐺𝑥)
199, 2oppchom 16987 . . . 4 ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)) = ((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥))
2016, 18, 193eqtr4g 2883 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑥tpos 𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
2120ralrimivva 3193 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦)))
221, 8oppcbas 16990 . . 3 (Base‘𝐶) = (Base‘𝑂)
23 eqid 2823 . . 3 (Hom ‘𝑃) = (Hom ‘𝑃)
2422, 23isfull 17182 . 2 (𝐹(𝑂 Full 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝑃)(𝐹𝑦))))
257, 21, 24sylanbrc 585 1 (𝜑𝐹(𝑂 Full 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068  ran crn 5558  ontowfo 6355  cfv 6357  (class class class)co 7158  tpos ctpos 7893  Basecbs 16485  Hom chom 16578  oppCatcoppc 16983   Func cfunc 17126   Full cful 17174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-oppc 16984  df-func 17130  df-full 17176
This theorem is referenced by:  ffthoppc  17196
  Copyright terms: Public domain W3C validator