MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2dmnop0 Structured version   Visualization version   GIF version

Theorem fun2dmnop0 13210
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop 13211 (with the less restrictive requirement that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 15787. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.)
Hypotheses
Ref Expression
fun2dmnop.a 𝐴 ∈ V
fun2dmnop.b 𝐵 ∈ V
Assertion
Ref Expression
fun2dmnop0 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnop0
StepHypRef Expression
1 simpl1 1062 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → Fun (𝐺 ∖ {∅}))
2 dmexg 7045 . . . . . 6 (𝐺 ∈ V → dom 𝐺 ∈ V)
32adantl 482 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → dom 𝐺 ∈ V)
4 fun2dmnop.a . . . . . . . . 9 𝐴 ∈ V
5 fun2dmnop.b . . . . . . . . 9 𝐵 ∈ V
64, 5prss 4324 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) ↔ {𝐴, 𝐵} ⊆ dom 𝐺)
7 simpl 473 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 ∈ dom 𝐺)
86, 7sylbir 225 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐴 ∈ dom 𝐺)
983ad2ant3 1082 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐴 ∈ dom 𝐺)
109adantr 481 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴 ∈ dom 𝐺)
11 simpr 477 . . . . . . . 8 ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐵 ∈ dom 𝐺)
126, 11sylbir 225 . . . . . . 7 ({𝐴, 𝐵} ⊆ dom 𝐺𝐵 ∈ dom 𝐺)
13123ad2ant3 1082 . . . . . 6 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → 𝐵 ∈ dom 𝐺)
1413adantr 481 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐵 ∈ dom 𝐺)
15 simpl2 1063 . . . . 5 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 𝐴𝐵)
163, 10, 14, 15nehash2 13191 . . . 4 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → 2 ≤ (#‘dom 𝐺))
17 fundmge2nop0 13208 . . . 4 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (#‘dom 𝐺)) → ¬ 𝐺 ∈ (V × V))
181, 16, 17syl2anc 692 . . 3 (((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) ∧ 𝐺 ∈ V) → ¬ 𝐺 ∈ (V × V))
1918ex 450 . 2 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))
20 prcnel 3209 . 2 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
2119, 20pm2.61d1 171 1 ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036  wcel 1992  wne 2796  Vcvv 3191  cdif 3557  wss 3560  c0 3896  {csn 4153  {cpr 4155   class class class wbr 4618   × cxp 5077  dom cdm 5079  Fun wfun 5844  cfv 5850  cle 10020  2c2 11015  #chash 13054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055
This theorem is referenced by:  fun2dmnop  13211  funvtxdm2val  25788  funiedgdm2val  25789  funvtxdm2valOLD  25790  funiedgdm2valOLD  25791
  Copyright terms: Public domain W3C validator