Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmptOLD Structured version   Visualization version   GIF version

Theorem funcnvmptOLD 29595
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnvmptOLD (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem funcnvmptOLD
StepHypRef Expression
1 relcnv 5538 . . . 4 Rel 𝐹
2 nfcv 2793 . . . . 5 𝑦𝐹
3 funcnvmpt.2 . . . . . 6 𝑥𝐹
43nfcnv 5333 . . . . 5 𝑥𝐹
52, 4dffun6f 5940 . . . 4 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑦∃*𝑥 𝑦𝐹𝑥))
61, 5mpbiran 973 . . 3 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑦𝐹𝑥)
7 vex 3234 . . . . . 6 𝑦 ∈ V
8 vex 3234 . . . . . 6 𝑥 ∈ V
97, 8brcnv 5337 . . . . 5 (𝑦𝐹𝑥𝑥𝐹𝑦)
109mobii 2521 . . . 4 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
1110albii 1787 . . 3 (∀𝑦∃*𝑥 𝑦𝐹𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
126, 11bitri 264 . 2 (Fun 𝐹 ↔ ∀𝑦∃*𝑥 𝑥𝐹𝑦)
13 nfv 1883 . . 3 𝑦𝜑
14 funcnvmpt.0 . . . 4 𝑥𝜑
15 funmpt 5964 . . . . . . . . 9 Fun (𝑥𝐴𝐵)
16 funcnvmpt.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
1716funeqi 5947 . . . . . . . . 9 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
1815, 17mpbir 221 . . . . . . . 8 Fun 𝐹
19 funbrfv2b 6279 . . . . . . . 8 (Fun 𝐹 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦)))
2018, 19ax-mp 5 . . . . . . 7 (𝑥𝐹𝑦 ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦))
21 funcnvmpt.4 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵𝑉)
22 elex 3243 . . . . . . . . . . . . . 14 (𝐵𝑉𝐵 ∈ V)
2321, 22syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
2423ex 449 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵 ∈ V))
2514, 24ralrimi 2986 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐵 ∈ V)
26 funcnvmpt.1 . . . . . . . . . . . 12 𝑥𝐴
2726rabid2f 3149 . . . . . . . . . . 11 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
2825, 27sylibr 224 . . . . . . . . . 10 (𝜑𝐴 = {𝑥𝐴𝐵 ∈ V})
2916dmmpt 5668 . . . . . . . . . 10 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3028, 29syl6reqr 2704 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
3130eleq2d 2716 . . . . . . . 8 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
3231anbi1d 741 . . . . . . 7 (𝜑 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3320, 32syl5bb 272 . . . . . 6 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3433bian1d 29434 . . . . 5 (𝜑 → ((𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑦)))
3516fveq1i 6230 . . . . . . . . . 10 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
36 simpr 476 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
3726fvmpt2f 6322 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3836, 21, 37syl2anc 694 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3935, 38syl5eq 2697 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4039eqeq2d 2661 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = 𝐵))
4131biimpar 501 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐹)
42 funbrfvb 6276 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
4318, 41, 42sylancr 696 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
44 eqcom 2658 . . . . . . . . . . 11 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
4544bibi1i 327 . . . . . . . . . 10 (((𝐹𝑥) = 𝑦𝑥𝐹𝑦) ↔ (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4645imbi2i 325 . . . . . . . . 9 (((𝜑𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)) ↔ ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦)))
4743, 46mpbi 220 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
4840, 47bitr3d 270 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑥𝐹𝑦))
4948ex 449 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐵𝑥𝐹𝑦)))
5049pm5.32d 672 . . . . 5 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑥𝐹𝑦)))
5134, 50, 333bitr4rd 301 . . . 4 (𝜑 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐵)))
5214, 51mobid 2517 . . 3 (𝜑 → (∃*𝑥 𝑥𝐹𝑦 ↔ ∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
5313, 52albid 2128 . 2 (𝜑 → (∀𝑦∃*𝑥 𝑥𝐹𝑦 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
5412, 53syl5bb 272 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wnf 1748  wcel 2030  ∃*wmo 2499  wnfc 2780  wral 2941  {crab 2945  Vcvv 3231   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  Rel wrel 5148  Fun wfun 5920  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator