MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvqp Structured version   Visualization version   GIF version

Theorem funcnvqp 5910
Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
funcnvqp ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))

Proof of Theorem funcnvqp
StepHypRef Expression
1 funcnvpr 5908 . . . . . . 7 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
213expa 1262 . . . . . 6 (((𝐴𝑈𝐶𝑉) ∧ 𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
323ad2antr1 1224 . . . . 5 (((𝐴𝑈𝐶𝑉) ∧ (𝐵𝐷𝐵𝐹𝐵𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
43ad2ant2r 782 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
543adantr2 1219 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
6 funcnvpr 5908 . . . . . 6 ((𝐸𝑊𝐺𝑇𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
763expa 1262 . . . . 5 (((𝐸𝑊𝐺𝑇) ∧ 𝐹𝐻) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
87ad2ant2l 781 . . . 4 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
983adantr2 1219 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
10 df-rn 5085 . . . . . 6 ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
11 rnpropg 5574 . . . . . 6 ((𝐴𝑈𝐶𝑉) → ran {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
1210, 11syl5eqr 2669 . . . . 5 ((𝐴𝑈𝐶𝑉) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐵, 𝐷})
13 df-rn 5085 . . . . . 6 ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}
14 rnpropg 5574 . . . . . 6 ((𝐸𝑊𝐺𝑇) → ran {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1513, 14syl5eqr 2669 . . . . 5 ((𝐸𝑊𝐺𝑇) → dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩} = {𝐹, 𝐻})
1612, 15ineqan12d 3794 . . . 4 (((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({𝐵, 𝐷} ∩ {𝐹, 𝐻}))
17 disjpr2 4218 . . . . . . 7 (((𝐵𝐹𝐷𝐹) ∧ (𝐵𝐻𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
1817an4s 868 . . . . . 6 (((𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
19183adantl1 1215 . . . . 5 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻)) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
20193adant3 1079 . . . 4 (((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻) → ({𝐵, 𝐷} ∩ {𝐹, 𝐻}) = ∅)
2116, 20sylan9eq 2675 . . 3 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅)
22 funun 5890 . . 3 (((Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∧ Fun {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ∧ (dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∩ dom {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
235, 9, 21, 22syl21anc 1322 . 2 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
24 cnvun 5497 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) = ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩})
2524funeqi 5868 . 2 (Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}) ↔ Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
2623, 25sylibr 224 1 ((((𝐴𝑈𝐶𝑉) ∧ (𝐸𝑊𝐺𝑇)) ∧ ((𝐵𝐷𝐵𝐹𝐵𝐻) ∧ (𝐷𝐹𝐷𝐻) ∧ 𝐹𝐻)) → Fun ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∪ {⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cun 3553  cin 3554  c0 3891  {cpr 4150  cop 4154  ccnv 5073  dom cdm 5074  ran crn 5075  Fun wfun 5841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-fun 5849
This theorem is referenced by:  funcnvs4  13596
  Copyright terms: Public domain W3C validator