MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvsn Structured version   Visualization version   GIF version

Theorem funcnvsn 5894
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5897 via cnvsn 5577, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5462 . 2 Rel {⟨𝐴, 𝐵⟩}
2 moeq 3364 . . . 4 ∃*𝑦 𝑦 = 𝐴
3 vex 3189 . . . . . . . 8 𝑥 ∈ V
4 vex 3189 . . . . . . . 8 𝑦 ∈ V
53, 4brcnv 5265 . . . . . . 7 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦{⟨𝐴, 𝐵⟩}𝑥)
6 df-br 4614 . . . . . . 7 (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
75, 6bitri 264 . . . . . 6 (𝑥{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 4165 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
94, 3opth1 4904 . . . . . . 7 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴)
108, 9syl 17 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴)
117, 10sylbi 207 . . . . 5 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦 = 𝐴)
1211moimi 2519 . . . 4 (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦)
132, 12ax-mp 5 . . 3 ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
1413ax-gen 1719 . 2 𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
15 dffun6 5862 . 2 (Fun {⟨𝐴, 𝐵⟩} ↔ (Rel {⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦))
161, 14, 15mpbir2an 954 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wal 1478   = wceq 1480  wcel 1987  ∃*wmo 2470  {csn 4148  cop 4154   class class class wbr 4613  ccnv 5073  Rel wrel 5079  Fun wfun 5841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-fun 5849
This theorem is referenced by:  funsng  5895  funcnvpr  5908  funcnvtp  5909  funcnvs1  13593  strlemor1OLD  15890  0spth  26853
  Copyright terms: Public domain W3C validator