MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoeqres Structured version   Visualization version   GIF version

Theorem funcoeqres 6205
Description: Re-express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 6199 . . . 4 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
21coeq2d 5317 . . 3 (Fun 𝐺 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
3 coass 5692 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
43eqcomi 2660 . . 3 (𝐹 ∘ (𝐺𝐺)) = ((𝐹𝐺) ∘ 𝐺)
5 coires1 5691 . . 3 (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)
62, 4, 53eqtr3g 2708 . 2 (Fun 𝐺 → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
7 coeq1 5312 . 2 ((𝐹𝐺) = 𝐻 → ((𝐹𝐺) ∘ 𝐺) = (𝐻𝐺))
86, 7sylan9req 2706 1 ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523   I cid 5052  ccnv 5142  ran crn 5144  cres 5145  ccom 5147  Fun wfun 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-fun 5928
This theorem is referenced by:  evlseu  19564  frlmup4  20188
  Copyright terms: Public domain W3C validator