MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2c Structured version   Visualization version   GIF version

Theorem funcres2c 17165
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
funcres2c.a 𝐴 = (Base‘𝐶)
funcres2c.e 𝐸 = (𝐷s 𝑆)
funcres2c.d (𝜑𝐷 ∈ Cat)
funcres2c.r (𝜑𝑆𝑉)
funcres2c.1 (𝜑𝐹:𝐴𝑆)
Assertion
Ref Expression
funcres2c (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))

Proof of Theorem funcres2c
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 863 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
21a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
3 olc 864 . . 3 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
43a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
5 funcres2c.a . . . . 5 𝐴 = (Base‘𝐶)
6 eqid 2821 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2821 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
8 eqid 2821 . . . . . . 7 (Homf𝐷) = (Homf𝐷)
9 funcres2c.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
10 inss2 4205 . . . . . . . 8 (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)
1110a1i 11 . . . . . . 7 (𝜑 → (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷))
127, 8, 9, 11fullsubc 17114 . . . . . 6 (𝜑 → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
1312adantr 483 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
148, 7homffn 16957 . . . . . . 7 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
15 xpss12 5564 . . . . . . . 8 (((𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) ∧ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) → ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
1610, 10, 15mp2an 690 . . . . . . 7 ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))
17 fnssres 6464 . . . . . . 7 (((Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
1814, 16, 17mp2an 690 . . . . . 6 ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))
1918a1i 11 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
20 funcres2c.1 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
2120adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴𝑆)
2221ffnd 6509 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹 Fn 𝐴)
2321frnd 6515 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹𝑆)
24 simpr 487 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
255, 7, 24funcf1 17130 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹:𝐴⟶(Base‘𝐷))
2625frnd 6515 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
27 eqid 2821 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
28 simpr 487 . . . . . . . . . . 11 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
295, 27, 28funcf1 17130 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹:𝐴⟶(Base‘𝐸))
3029frnd 6515 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐸))
31 funcres2c.e . . . . . . . . . 10 𝐸 = (𝐷s 𝑆)
3231, 7ressbasss 16550 . . . . . . . . 9 (Base‘𝐸) ⊆ (Base‘𝐷)
3330, 32sstrdi 3978 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
3426, 33jaodan 954 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (Base‘𝐷))
3523, 34ssind 4208 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷)))
36 df-f 6353 . . . . . 6 (𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷))))
3722, 35, 36sylanbrc 585 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
38 eqid 2821 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
39 simpr 487 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
40 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑥𝐴)
41 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑦𝐴)
425, 6, 38, 39, 40, 41funcf2 17132 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
43 eqid 2821 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
44 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
45 simplrl 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑥𝐴)
46 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑦𝐴)
475, 6, 43, 44, 45, 46funcf2 17132 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
48 funcres2c.r . . . . . . . . . . . . 13 (𝜑𝑆𝑉)
4931, 38resshom 16685 . . . . . . . . . . . . 13 (𝑆𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸))
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸))
5150ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (Hom ‘𝐷) = (Hom ‘𝐸))
5251oveqd 7167 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
5352feq3d 6495 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
5447, 53mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5542, 54jaodan 954 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5655an32s 650 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5737adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
58 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
5957, 58ffvelrnd 6846 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (𝑆 ∩ (Base‘𝐷)))
60 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
6157, 60ffvelrnd 6846 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (𝑆 ∩ (Base‘𝐷)))
6259, 61ovresd 7309 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)))
6359elin2d 4175 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (Base‘𝐷))
6461elin2d 4175 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (Base‘𝐷))
658, 7, 38, 63, 64homfval 16956 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6662, 65eqtrd 2856 . . . . . . 7 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6766feq3d 6495 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
6856, 67mpbird 259 . . . . 5 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)))
695, 6, 13, 19, 37, 68funcres2b 17161 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
70 eqidd 2822 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐶) = (Homf𝐶))
71 eqidd 2822 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐶) = (compf𝐶))
727ressinbas 16554 . . . . . . . . . . 11 (𝑆𝑉 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7348, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7431, 73syl5eq 2868 . . . . . . . . 9 (𝜑𝐸 = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7574fveq2d 6668 . . . . . . . 8 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
76 eqid 2821 . . . . . . . . . 10 (𝐷s (𝑆 ∩ (Base‘𝐷))) = (𝐷s (𝑆 ∩ (Base‘𝐷)))
77 eqid 2821 . . . . . . . . . 10 (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) = (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))
787, 8, 9, 11, 76, 77fullresc 17115 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))) ∧ (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))))
7978simpld 497 . . . . . . . 8 (𝜑 → (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8075, 79eqtrd 2856 . . . . . . 7 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8180adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8274fveq2d 6668 . . . . . . . 8 (𝜑 → (compf𝐸) = (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
8378simprd 498 . . . . . . . 8 (𝜑 → (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8482, 83eqtrd 2856 . . . . . . 7 (𝜑 → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8584adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
86 df-br 5059 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
87 funcrcl 17127 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
8886, 87sylbi 219 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
8988simpld 497 . . . . . . . . 9 (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat)
90 df-br 5059 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
91 funcrcl 17127 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9290, 91sylbi 219 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9392simpld 497 . . . . . . . . 9 (𝐹(𝐶 Func 𝐸)𝐺𝐶 ∈ Cat)
9489, 93jaoi 853 . . . . . . . 8 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ Cat)
9594elexd 3514 . . . . . . 7 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ V)
9695adantl 484 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐶 ∈ V)
9731ovexi 7184 . . . . . . 7 𝐸 ∈ V
9897a1i 11 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐸 ∈ V)
99 ovexd 7185 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V)
10070, 71, 81, 85, 96, 96, 98, 99funcpropd 17164 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐶 Func 𝐸) = (𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
101100breqd 5069 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐸)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
10269, 101bitr4d 284 . . 3 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
103102ex 415 . 2 (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
1042, 4, 103pm5.21ndd 383 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  cin 3934  wss 3935  cop 4566   class class class wbr 5058   × cxp 5547  ran crn 5550  cres 5551   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  Hom chom 16570  Catccat 16929  Homf chomf 16931  compfccomf 16932  cat cresc 17072  Subcatcsubc 17073   Func cfunc 17118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-homf 16935  df-comf 16936  df-ssc 17074  df-resc 17075  df-subc 17076  df-func 17122
This theorem is referenced by:  fthres2c  17195  fullres2c  17203
  Copyright terms: Public domain W3C validator