MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrc Structured version   Visualization version   GIF version

Theorem funcsetcestrc 16736
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrc (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrc
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.c . 2 𝐶 = (Base‘𝑆)
2 eqid 2621 . 2 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2621 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2621 . 2 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2621 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2621 . 2 (Id‘𝐸) = (Id‘𝐸)
7 eqid 2621 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2621 . 2 (comp‘𝐸) = (comp‘𝐸)
9 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcsetcestrc.s . . . 4 𝑆 = (SetCat‘𝑈)
1110setccat 16667 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝑆 ∈ Cat)
13 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
1413estrccat 16705 . . 3 (𝑈 ∈ WUni → 𝐸 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝐸 ∈ Cat)
16 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
17 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
1810, 1, 16, 9, 17, 13, 2funcsetcestrclem3 16728 . 2 (𝜑𝐹:𝐶⟶(Base‘𝐸))
19 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
2010, 1, 16, 9, 17, 19funcsetcestrclem4 16730 . 2 (𝜑𝐺 Fn (𝐶 × 𝐶))
2110, 1, 16, 9, 17, 19, 13funcsetcestrclem8 16734 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
2210, 1, 16, 9, 17, 19, 13funcsetcestrclem7 16733 . 2 ((𝜑𝑎𝐶) → ((𝑎𝐺𝑎)‘((Id‘𝑆)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)))
2310, 1, 16, 9, 17, 19, 13funcsetcestrclem9 16735 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶𝑐𝐶) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑆)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝑆)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
241, 2, 3, 4, 5, 6, 7, 8, 12, 15, 18, 20, 21, 22, 23isfuncd 16457 1 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {csn 4153  cop 4159   class class class wbr 4618  cmpt 4678   I cid 4989  cres 5081  cfv 5852  (class class class)co 6610  cmpt2 6612  ωcom 7019  𝑚 cmap 7809  WUnicwun 9474  ndxcnx 15789  Basecbs 15792  Hom chom 15884  compcco 15885  Catccat 16257  Idccid 16258   Func cfunc 16446  SetCatcsetc 16657  ExtStrCatcestrc 16694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-omul 7517  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-wun 9476  df-ni 9646  df-pli 9647  df-mi 9648  df-lti 9649  df-plpq 9682  df-mpq 9683  df-ltpq 9684  df-enq 9685  df-nq 9686  df-erq 9687  df-plq 9688  df-mq 9689  df-1nq 9690  df-rq 9691  df-ltnq 9692  df-np 9755  df-plp 9757  df-ltp 9759  df-enr 9829  df-nr 9830  df-c 9894  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-hom 15898  df-cco 15899  df-cat 16261  df-cid 16262  df-func 16450  df-setc 16658  df-estrc 16695
This theorem is referenced by:  fthsetcestrc  16737  fullsetcestrc  16738
  Copyright terms: Public domain W3C validator