MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrc Structured version   Visualization version   GIF version

Theorem funcsetcestrc 17417
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrc (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑦,𝐶,𝑥   𝜑,𝑦   𝑥,𝐸
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcsetcestrc
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.c . 2 𝐶 = (Base‘𝑆)
2 eqid 2824 . 2 (Base‘𝐸) = (Base‘𝐸)
3 eqid 2824 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2824 . 2 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2824 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2824 . 2 (Id‘𝐸) = (Id‘𝐸)
7 eqid 2824 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2824 . 2 (comp‘𝐸) = (comp‘𝐸)
9 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcsetcestrc.s . . . 4 𝑆 = (SetCat‘𝑈)
1110setccat 17348 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝑆 ∈ Cat)
13 funcsetcestrc.e . . . 4 𝐸 = (ExtStrCat‘𝑈)
1413estrccat 17386 . . 3 (𝑈 ∈ WUni → 𝐸 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝐸 ∈ Cat)
16 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
17 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
1810, 1, 16, 9, 17, 13, 2funcsetcestrclem3 17409 . 2 (𝜑𝐹:𝐶⟶(Base‘𝐸))
19 funcsetcestrc.g . . 3 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦m 𝑥))))
2010, 1, 16, 9, 17, 19funcsetcestrclem4 17411 . 2 (𝜑𝐺 Fn (𝐶 × 𝐶))
2110, 1, 16, 9, 17, 19, 13funcsetcestrclem8 17415 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑆)𝑏)⟶((𝐹𝑎)(Hom ‘𝐸)(𝐹𝑏)))
2210, 1, 16, 9, 17, 19, 13funcsetcestrclem7 17414 . 2 ((𝜑𝑎𝐶) → ((𝑎𝐺𝑎)‘((Id‘𝑆)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)))
2310, 1, 16, 9, 17, 19, 13funcsetcestrclem9 17416 . 2 ((𝜑 ∧ (𝑎𝐶𝑏𝐶𝑐𝐶) ∧ ( ∈ (𝑎(Hom ‘𝑆)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑆)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝑆)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
241, 2, 3, 4, 5, 6, 7, 8, 12, 15, 18, 20, 21, 22, 23isfuncd 17138 1 (𝜑𝐹(𝑆 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  {csn 4570  cop 4576   class class class wbr 5069  cmpt 5149   I cid 5462  cres 5560  cfv 6358  (class class class)co 7159  cmpo 7161  ωcom 7583  m cmap 8409  WUnicwun 10125  ndxcnx 16483  Basecbs 16486  Hom chom 16579  compcco 16580  Catccat 16938  Idccid 16939   Func cfunc 17127  SetCatcsetc 17338  ExtStrCatcestrc 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-wun 10127  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-plp 10408  df-ltp 10410  df-enr 10480  df-nr 10481  df-c 10546  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-hom 16592  df-cco 16593  df-cat 16942  df-cid 16943  df-func 17131  df-setc 17339  df-estrc 17376
This theorem is referenced by:  fthsetcestrc  17418  fullsetcestrc  17419
  Copyright terms: Public domain W3C validator