MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcestrclem9 Structured version   Visualization version   GIF version

Theorem funcsetcestrclem9 16735
Description: Lemma 9 for funcsetcestrc 16736. (Contributed by AV, 28-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrc.g (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
funcsetcestrc.e 𝐸 = (ExtStrCat‘𝑈)
Assertion
Ref Expression
funcsetcestrclem9 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥   𝑦,𝐶,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcsetcestrclem9
StepHypRef Expression
1 funcsetcestrc.s . . . . . 6 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑈 ∈ WUni)
4 eqid 2621 . . . . . 6 (Hom ‘𝑆) = (Hom ‘𝑆)
51, 2setcbas 16660 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑆))
6 funcsetcestrc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
75, 6syl6reqr 2674 . . . . . . . . . 10 (𝜑𝐶 = 𝑈)
87eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑋𝐶𝑋𝑈))
98biimpcd 239 . . . . . . . 8 (𝑋𝐶 → (𝜑𝑋𝑈))
1093ad2ant1 1080 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑋𝑈))
1110impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑋𝑈)
127eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑌𝐶𝑌𝑈))
1312biimpcd 239 . . . . . . . 8 (𝑌𝐶 → (𝜑𝑌𝑈))
14133ad2ant2 1081 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑌𝑈))
1514impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑌𝑈)
161, 3, 4, 11, 15setchom 16662 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋(Hom ‘𝑆)𝑌) = (𝑌𝑚 𝑋))
1716eleq2d 2684 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ↔ 𝐻 ∈ (𝑌𝑚 𝑋)))
187eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑍𝐶𝑍𝑈))
1918biimpcd 239 . . . . . . . 8 (𝑍𝐶 → (𝜑𝑍𝑈))
20193ad2ant3 1082 . . . . . . 7 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝜑𝑍𝑈))
2120impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → 𝑍𝑈)
221, 3, 4, 15, 21setchom 16662 . . . . 5 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑌(Hom ‘𝑆)𝑍) = (𝑍𝑚 𝑌))
2322eleq2d 2684 . . . 4 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍) ↔ 𝐾 ∈ (𝑍𝑚 𝑌)))
2417, 23anbi12d 746 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) ↔ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))))
25 elmapi 7831 . . . . . . . . 9 (𝐾 ∈ (𝑍𝑚 𝑌) → 𝐾:𝑌𝑍)
26 elmapi 7831 . . . . . . . . 9 (𝐻 ∈ (𝑌𝑚 𝑋) → 𝐻:𝑋𝑌)
27 fco 6020 . . . . . . . . 9 ((𝐾:𝑌𝑍𝐻:𝑋𝑌) → (𝐾𝐻):𝑋𝑍)
2825, 26, 27syl2anr 495 . . . . . . . 8 ((𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌)) → (𝐾𝐻):𝑋𝑍)
2928adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐾𝐻):𝑋𝑍)
30 elmapg 7822 . . . . . . . . . 10 ((𝑍𝐶𝑋𝐶) → ((𝐾𝐻) ∈ (𝑍𝑚 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3130ancoms 469 . . . . . . . . 9 ((𝑋𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍𝑚 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
32313adant2 1078 . . . . . . . 8 ((𝑋𝐶𝑌𝐶𝑍𝐶) → ((𝐾𝐻) ∈ (𝑍𝑚 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3332ad2antlr 762 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝐾𝐻) ∈ (𝑍𝑚 𝑋) ↔ (𝐾𝐻):𝑋𝑍))
3429, 33mpbird 247 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐾𝐻) ∈ (𝑍𝑚 𝑋))
35 fvresi 6399 . . . . . 6 ((𝐾𝐻) ∈ (𝑍𝑚 𝑋) → (( I ↾ (𝑍𝑚 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
3634, 35syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (( I ↾ (𝑍𝑚 𝑋))‘(𝐾𝐻)) = (𝐾𝐻))
37 funcsetcestrc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
38 funcsetcestrc.o . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
39 funcsetcestrc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐶, 𝑦𝐶 ↦ ( I ↾ (𝑦𝑚 𝑥))))
401, 6, 37, 2, 38, 39funcsetcestrclem5 16731 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍𝑚 𝑋)))
41403adantr2 1219 . . . . . . 7 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝑋𝐺𝑍) = ( I ↾ (𝑍𝑚 𝑋)))
4241adantr 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝑋𝐺𝑍) = ( I ↾ (𝑍𝑚 𝑋)))
433adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝑈 ∈ WUni)
44 eqid 2621 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
4511adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝑋𝑈)
4615adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝑌𝑈)
4721adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝑍𝑈)
4826ad2antrl 763 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝐻:𝑋𝑌)
4925ad2antll 764 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝐾:𝑌𝑍)
501, 43, 44, 45, 46, 47, 48, 49setcco 16665 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻) = (𝐾𝐻))
5142, 50fveq12d 6159 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (( I ↾ (𝑍𝑚 𝑋))‘(𝐾𝐻)))
52 funcsetcestrc.e . . . . . . 7 𝐸 = (ExtStrCat‘𝑈)
53 eqid 2621 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
541, 6, 37, 2, 38funcsetcestrclem2 16727 . . . . . . . . 9 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ 𝑈)
55543ad2antr1 1224 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) ∈ 𝑈)
5655adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐹𝑋) ∈ 𝑈)
571, 6, 37, 2, 38funcsetcestrclem2 16727 . . . . . . . . 9 ((𝜑𝑌𝐶) → (𝐹𝑌) ∈ 𝑈)
58573ad2antr2 1225 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) ∈ 𝑈)
5958adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐹𝑌) ∈ 𝑈)
601, 6, 37, 2, 38funcsetcestrclem2 16727 . . . . . . . . 9 ((𝜑𝑍𝐶) → (𝐹𝑍) ∈ 𝑈)
61603ad2antr3 1226 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) ∈ 𝑈)
6261adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝐹𝑍) ∈ 𝑈)
63 eqid 2621 . . . . . . 7 (Base‘(𝐹𝑋)) = (Base‘(𝐹𝑋))
64 eqid 2621 . . . . . . 7 (Base‘(𝐹𝑌)) = (Base‘(𝐹𝑌))
65 eqid 2621 . . . . . . 7 (Base‘(𝐹𝑍)) = (Base‘(𝐹𝑍))
66 simpll 789 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝜑)
67 3simpa 1056 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑋𝐶𝑌𝐶))
6867ad2antlr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝑋𝐶𝑌𝐶))
69 simprl 793 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝐻 ∈ (𝑌𝑚 𝑋))
701, 6, 37, 2, 38, 39funcsetcestrclem6 16732 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶) ∧ 𝐻 ∈ (𝑌𝑚 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7166, 68, 69, 70syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
721, 6, 37funcsetcestrclem1 16726 . . . . . . . . . . . . 13 ((𝜑𝑋𝐶) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
73723ad2antr1 1224 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑋) = {⟨(Base‘ndx), 𝑋⟩})
7473fveq2d 6157 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
75 eqid 2621 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑋⟩} = {⟨(Base‘ndx), 𝑋⟩}
76751strbas 15912 . . . . . . . . . . . . . 14 (𝑋𝐶𝑋 = (Base‘{⟨(Base‘ndx), 𝑋⟩}))
7776eqcomd 2627 . . . . . . . . . . . . 13 (𝑋𝐶 → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
78773ad2ant1 1080 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
7978adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑋⟩}) = 𝑋)
8074, 79eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑋)) = 𝑋)
8180adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (Base‘(𝐹𝑋)) = 𝑋)
821, 6, 37funcsetcestrclem1 16726 . . . . . . . . . . . . 13 ((𝜑𝑌𝐶) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
83823ad2antr2 1225 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑌) = {⟨(Base‘ndx), 𝑌⟩})
8483fveq2d 6157 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
85 eqid 2621 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑌⟩} = {⟨(Base‘ndx), 𝑌⟩}
86851strbas 15912 . . . . . . . . . . . . . 14 (𝑌𝐶𝑌 = (Base‘{⟨(Base‘ndx), 𝑌⟩}))
8786eqcomd 2627 . . . . . . . . . . . . 13 (𝑌𝐶 → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
88873ad2ant2 1081 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
8988adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑌⟩}) = 𝑌)
9084, 89eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑌)) = 𝑌)
9190adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (Base‘(𝐹𝑌)) = 𝑌)
9271, 81, 91feq123d 5996 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)) ↔ 𝐻:𝑋𝑌))
9348, 92mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑋𝐺𝑌)‘𝐻):(Base‘(𝐹𝑋))⟶(Base‘(𝐹𝑌)))
94 3simpc 1058 . . . . . . . . . . 11 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (𝑌𝐶𝑍𝐶))
9594ad2antlr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (𝑌𝐶𝑍𝐶))
96 simprr 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → 𝐾 ∈ (𝑍𝑚 𝑌))
971, 6, 37, 2, 38, 39funcsetcestrclem6 16732 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐶𝑍𝐶) ∧ 𝐾 ∈ (𝑍𝑚 𝑌)) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9866, 95, 96, 97syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
991, 6, 37funcsetcestrclem1 16726 . . . . . . . . . . . . 13 ((𝜑𝑍𝐶) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
100993ad2antr3 1226 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (𝐹𝑍) = {⟨(Base‘ndx), 𝑍⟩})
101100fveq2d 6157 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
102 eqid 2621 . . . . . . . . . . . . . . 15 {⟨(Base‘ndx), 𝑍⟩} = {⟨(Base‘ndx), 𝑍⟩}
1031021strbas 15912 . . . . . . . . . . . . . 14 (𝑍𝐶𝑍 = (Base‘{⟨(Base‘ndx), 𝑍⟩}))
104103eqcomd 2627 . . . . . . . . . . . . 13 (𝑍𝐶 → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
1051043ad2ant3 1082 . . . . . . . . . . . 12 ((𝑋𝐶𝑌𝐶𝑍𝐶) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
106105adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘{⟨(Base‘ndx), 𝑍⟩}) = 𝑍)
107101, 106eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → (Base‘(𝐹𝑍)) = 𝑍)
108107adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (Base‘(𝐹𝑍)) = 𝑍)
10998, 91, 108feq123d 5996 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)) ↔ 𝐾:𝑌𝑍))
11049, 109mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑌𝐺𝑍)‘𝐾):(Base‘(𝐹𝑌))⟶(Base‘(𝐹𝑍)))
11152, 43, 53, 56, 59, 62, 63, 64, 65, 93, 110estrcco 16702 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
11298, 71coeq12d 5251 . . . . . 6 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
113111, 112eqtrd 2655 . . . . 5 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
11436, 51, 1133eqtr4d 2665 . . . 4 (((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) ∧ (𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
115114ex 450 . . 3 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑌𝑚 𝑋) ∧ 𝐾 ∈ (𝑍𝑚 𝑌)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
11624, 115sylbid 230 . 2 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶)) → ((𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
1171163impia 1258 1 ((𝜑 ∧ (𝑋𝐶𝑌𝐶𝑍𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {csn 4153  cop 4159  cmpt 4678   I cid 4989  cres 5081  ccom 5083  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  ωcom 7019  𝑚 cmap 7809  WUnicwun 9474  ndxcnx 15789  Basecbs 15792  Hom chom 15884  compcco 15885  SetCatcsetc 16657  ExtStrCatcestrc 16694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-omul 7517  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-wun 9476  df-ni 9646  df-pli 9647  df-mi 9648  df-lti 9649  df-plpq 9682  df-mpq 9683  df-ltpq 9684  df-enq 9685  df-nq 9686  df-erq 9687  df-plq 9688  df-mq 9689  df-1nq 9690  df-rq 9691  df-ltnq 9692  df-np 9755  df-plp 9757  df-ltp 9759  df-enr 9829  df-nr 9830  df-c 9894  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-hom 15898  df-cco 15899  df-setc 16658  df-estrc 16695
This theorem is referenced by:  funcsetcestrc  16736
  Copyright terms: Public domain W3C validator