MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Structured version   Visualization version   GIF version

Theorem funcsetcres2 17341
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
funcsetcres2 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))

Proof of Theorem funcsetcres2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2819 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf𝐸) = (Homf𝐸))
2 eqidd 2819 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf𝐸) = (compf𝐸))
3 eqid 2818 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2818 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
5 resssetc.1 . . . . . . . . . . 11 (𝜑𝑈𝑊)
6 resssetc.c . . . . . . . . . . . 12 𝐶 = (SetCat‘𝑈)
76setccat 17333 . . . . . . . . . . 11 (𝑈𝑊𝐶 ∈ Cat)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
98adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat)
10 resssetc.2 . . . . . . . . . . 11 (𝜑𝑉𝑈)
116, 5setcbas 17326 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐶))
1210, 11sseqtrd 4004 . . . . . . . . . 10 (𝜑𝑉 ⊆ (Base‘𝐶))
1312adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶))
14 eqid 2818 . . . . . . . . 9 (𝐶s 𝑉) = (𝐶s 𝑉)
15 eqid 2818 . . . . . . . . 9 (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) = (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))
163, 4, 9, 13, 14, 15fullresc 17109 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ∧ (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))))))
1716simpld 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
18 resssetc.d . . . . . . . . . 10 𝐷 = (SetCat‘𝑉)
196, 18, 5, 10resssetc 17340 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2019adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2120simpld 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
2217, 21eqtr3d 2855 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (Homf𝐷))
2316simprd 496 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
2420simprd 496 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf𝐷))
2523, 24eqtr3d 2855 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (compf𝐷))
26 funcrcl 17121 . . . . . . . 8 (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2726adantl 482 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2827simpld 495 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat)
293, 4, 9, 13fullsubc 17108 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶))
3015, 29subccat 17106 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat)
3127simprd 496 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat)
321, 2, 22, 25, 28, 28, 30, 31funcpropd 17158 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷))
33 funcres2 17156 . . . . . 6 (((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3429, 33syl 17 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3532, 34eqsstrrd 4003 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
36 simpr 485 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷))
3735, 36sseldd 3965 . . 3 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶))
3837ex 413 . 2 (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶)))
3938ssrdv 3970 1 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wss 3933   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  Basecbs 16471  s cress 16472  Catccat 16923  Homf chomf 16925  compfccomf 16926  cat cresc 17066  Subcatcsubc 17067   Func cfunc 17112  SetCatcsetc 17323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-hom 16577  df-cco 16578  df-cat 16927  df-cid 16928  df-homf 16929  df-comf 16930  df-ssc 17068  df-resc 17069  df-subc 17070  df-func 17116  df-setc 17324
This theorem is referenced by:  yonedalem1  17510
  Copyright terms: Public domain W3C validator