MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmen Structured version   Visualization version   GIF version

Theorem fundmen 7893
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1 𝐹 ∈ V
Assertion
Ref Expression
fundmen (Fun 𝐹 → dom 𝐹𝐹)

Proof of Theorem fundmen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundmen.1 . . . 4 𝐹 ∈ V
21dmex 6968 . . 3 dom 𝐹 ∈ V
32a1i 11 . 2 (Fun 𝐹 → dom 𝐹 ∈ V)
41a1i 11 . 2 (Fun 𝐹𝐹 ∈ V)
5 funfvop 6222 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
65ex 448 . 2 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
7 funrel 5807 . . 3 (Fun 𝐹 → Rel 𝐹)
8 elreldm 5258 . . . 4 ((Rel 𝐹𝑦𝐹) → 𝑦 ∈ dom 𝐹)
98ex 448 . . 3 (Rel 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
107, 9syl 17 . 2 (Fun 𝐹 → (𝑦𝐹 𝑦 ∈ dom 𝐹))
11 df-rel 5035 . . . . . . . . 9 (Rel 𝐹𝐹 ⊆ (V × V))
127, 11sylib 206 . . . . . . . 8 (Fun 𝐹𝐹 ⊆ (V × V))
1312sselda 3567 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → 𝑦 ∈ (V × V))
14 elvv 5090 . . . . . . 7 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
1513, 14sylib 206 . . . . . 6 ((Fun 𝐹𝑦𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
16 inteq 4407 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
1716inteqd 4409 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧, 𝑤⟩)
18 vex 3175 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
19 vex 3175 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
2018, 19op1stb 4861 . . . . . . . . . . . . . . . 16 𝑧, 𝑤⟩ = 𝑧
2117, 20syl6eq 2659 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑦 = 𝑧)
22 eqeq1 2613 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 = 𝑧 𝑦 = 𝑧))
2321, 22syl5ibr 234 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑥 = 𝑧))
24 opeq1 4334 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
2523, 24syl6 34 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩))
2625imp 443 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → ⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩)
27 eqeq2 2620 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → (𝑦 = ⟨𝑥, 𝑤⟩ ↔ 𝑦 = ⟨𝑧, 𝑤⟩))
2827biimprcd 238 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
2928adantl 480 . . . . . . . . . . . 12 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (⟨𝑥, 𝑤⟩ = ⟨𝑧, 𝑤⟩ → 𝑦 = ⟨𝑥, 𝑤⟩))
3026, 29mpd 15 . . . . . . . . . . 11 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → 𝑦 = ⟨𝑥, 𝑤⟩)
3130ancoms 467 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦) → 𝑦 = ⟨𝑥, 𝑤⟩)
3231adantl 480 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, 𝑤⟩)
3330eleq1d 2671 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
3433adantl 480 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐹))
35 funopfv 6130 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3635adantr 479 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (⟨𝑥, 𝑤⟩ ∈ 𝐹 → (𝐹𝑥) = 𝑤))
3734, 36sylbid 228 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑥 = 𝑦𝑦 = ⟨𝑧, 𝑤⟩)) → (𝑦𝐹 → (𝐹𝑥) = 𝑤))
3837exp32 628 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 = 𝑦 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹 → (𝐹𝑥) = 𝑤))))
3938com24 92 . . . . . . . . . . 11 (Fun 𝐹 → (𝑦𝐹 → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦 → (𝐹𝑥) = 𝑤))))
4039imp43 618 . . . . . . . . . 10 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → (𝐹𝑥) = 𝑤)
4140opeq2d 4341 . . . . . . . . 9 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝑥, 𝑤⟩)
4232, 41eqtr4d 2646 . . . . . . . 8 (((Fun 𝐹𝑦𝐹) ∧ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥 = 𝑦)) → 𝑦 = ⟨𝑥, (𝐹𝑥)⟩)
4342exp32 628 . . . . . . 7 ((Fun 𝐹𝑦𝐹) → (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4443exlimdvv 1848 . . . . . 6 ((Fun 𝐹𝑦𝐹) → (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
4515, 44mpd 15 . . . . 5 ((Fun 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
4645adantrl 747 . . . 4 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
47 inteq 4407 . . . . . 6 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
4847inteqd 4409 . . . . 5 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑦 = 𝑥, (𝐹𝑥)⟩)
49 vex 3175 . . . . . 6 𝑥 ∈ V
50 fvex 6098 . . . . . 6 (𝐹𝑥) ∈ V
5149, 50op1stb 4861 . . . . 5 𝑥, (𝐹𝑥)⟩ = 𝑥
5248, 51syl6req 2660 . . . 4 (𝑦 = ⟨𝑥, (𝐹𝑥)⟩ → 𝑥 = 𝑦)
5346, 52impbid1 213 . . 3 ((Fun 𝐹 ∧ (𝑥 ∈ dom 𝐹𝑦𝐹)) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩))
5453ex 448 . 2 (Fun 𝐹 → ((𝑥 ∈ dom 𝐹𝑦𝐹) → (𝑥 = 𝑦𝑦 = ⟨𝑥, (𝐹𝑥)⟩)))
553, 4, 6, 10, 54en3d 7855 1 (Fun 𝐹 → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  Vcvv 3172  wss 3539  cop 4130   cint 4404   class class class wbr 4577   × cxp 5026  dom cdm 5028  Rel wrel 5033  Fun wfun 5784  cfv 5790  cen 7815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-int 4405  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-en 7819
This theorem is referenced by:  fundmeng  7894  infmap2  8900  heicant  32410
  Copyright terms: Public domain W3C validator