![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version |
Description: The value of a function. Version of funfv2 6428 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
Ref | Expression |
---|---|
funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv2 6428 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
4 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
5 | 2, 3, 4 | nfbr 4851 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
6 | nfv 1992 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
7 | breq2 4808 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
8 | 5, 6, 7 | cbvab 2884 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
9 | 8 | unieqi 4597 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
10 | 1, 9 | syl6eq 2810 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 {cab 2746 Ⅎwnfc 2889 ∪ cuni 4588 class class class wbr 4804 Fun wfun 6043 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |