MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvop Structured version   Visualization version   GIF version

Theorem funfvop 6120
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
funfvop ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)

Proof of Theorem funfvop
StepHypRef Expression
1 eqid 2514 . 2 (𝐹𝐴) = (𝐹𝐴)
2 funopfvb 6032 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = (𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
31, 2mpbii 221 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  cop 4034  dom cdm 4932  Fun wfun 5683  cfv 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-iota 5653  df-fun 5691  df-fn 5692  df-fv 5697
This theorem is referenced by:  funfvbrb  6121  fvimacnv  6123  fnopfv  6142  fvelrn  6143  dff3  6163  fnsnb  6213  funfvima3  6275  wfrlem17  7192  tfrlem9a  7244  fundmen  7791  adj1  27965  fgreu  28643  bnj145OLD  29895
  Copyright terms: Public domain W3C validator