MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6442
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 5927 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
21eleq1d 2899 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ V ↔ (𝐴𝐵) ∈ V))
32imbi2d 343 . . 3 (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴𝐵) ∈ V)))
4 dffun5 6370 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
5 nfv 1915 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
65axrep4 5197 . . . . 5 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
7 isset 3508 . . . . . 6 ((𝐴𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴𝑤))
8 dfima3 5934 . . . . . . . . 9 (𝐴𝑤) = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
98eqeq2i 2836 . . . . . . . 8 (𝑧 = (𝐴𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)})
10 abeq2 2947 . . . . . . . 8 (𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
119, 10bitri 277 . . . . . . 7 (𝑧 = (𝐴𝑤) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1211exbii 1848 . . . . . 6 (∃𝑧 𝑧 = (𝐴𝑤) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
137, 12bitri 277 . . . . 5 ((𝐴𝑤) ∈ V ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
146, 13sylibr 236 . . . 4 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → (𝐴𝑤) ∈ V)
154, 14simplbiim 507 . . 3 (Fun 𝐴 → (𝐴𝑤) ∈ V)
163, 15vtoclg 3569 . 2 (𝐵𝐶 → (Fun 𝐴 → (𝐴𝐵) ∈ V))
1716impcom 410 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2801  Vcvv 3496  cop 4575  cima 5560  Rel wrel 5562  Fun wfun 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-fun 6359
This theorem is referenced by:  funimaex  6443  resfunexg  6980  resfunexgALT  7651  fnexALT  7654  wdomimag  9053  carduniima  9524  dfac12lem2  9572  ttukeylem3  9935  nnexALT  11642  seqex  13374  fbasrn  22494  elfm3  22560  bdayimaon  33199  nosupno  33205  madeval  33291  fundcmpsurinjlem3  43567  fundcmpsurbijinjpreimafv  43574  fundcmpsurbijinj  43577  fundcmpsurinjALT  43579
  Copyright terms: Public domain W3C validator