MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 5774
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 5271 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
21eleq1d 2576 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ V ↔ (𝐴𝐵) ∈ V))
32imbi2d 328 . . 3 (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴𝐵) ∈ V)))
4 dffun5 5702 . . . . 5 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
54simprbi 478 . . . 4 (Fun 𝐴 → ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧))
6 nfv 1796 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
76axrep4 4601 . . . . 5 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
8 isset 3084 . . . . . 6 ((𝐴𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴𝑤))
9 dfima3 5278 . . . . . . . . 9 (𝐴𝑤) = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
109eqeq2i 2526 . . . . . . . 8 (𝑧 = (𝐴𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)})
11 abeq2 2623 . . . . . . . 8 (𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1210, 11bitri 262 . . . . . . 7 (𝑧 = (𝐴𝑤) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1312exbii 1752 . . . . . 6 (∃𝑧 𝑧 = (𝐴𝑤) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
148, 13bitri 262 . . . . 5 ((𝐴𝑤) ∈ V ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
157, 14sylibr 222 . . . 4 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → (𝐴𝑤) ∈ V)
165, 15syl 17 . . 3 (Fun 𝐴 → (𝐴𝑤) ∈ V)
173, 16vtoclg 3143 . 2 (𝐵𝐶 → (Fun 𝐴 → (𝐴𝐵) ∈ V))
1817impcom 444 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wex 1694  wcel 1938  {cab 2500  Vcvv 3077  cop 4034  cima 4935  Rel wrel 4937  Fun wfun 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-br 4482  df-opab 4542  df-id 4847  df-xp 4938  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-fun 5691
This theorem is referenced by:  funimaex  5775  resfunexg  6260  resfunexgALT  6896  fnexALT  6899  wdomimag  8250  carduniima  8677  dfac12lem2  8724  ttukeylem3  9091  nnexALT  10776  seqex  12532  fbasrn  21399  elfm3  21465  nobndlem1  30927
  Copyright terms: Public domain W3C validator