MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass1 Structured version   Visualization version   GIF version

Theorem funimass1 5934
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 5465 . 2 ((𝐹𝐴) ⊆ 𝐵 → (𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵))
2 funimacnv 5933 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
3 dfss 3574 . . . . . 6 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
43biimpi 206 . . . . 5 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
54eqcomd 2627 . . . 4 (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴)
62, 5sylan9eq 2675 . . 3 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐹 “ (𝐹𝐴)) = 𝐴)
76sseq1d 3616 . 2 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵) ↔ 𝐴 ⊆ (𝐹𝐵)))
81, 7syl5ib 234 1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  cin 3558  wss 3559  ccnv 5078  ran crn 5080  cima 5082  Fun wfun 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-fun 5854
This theorem is referenced by:  kqnrmlem1  21469  hmeontr  21495  nrmhmph  21520  cnheiborlem  22676
  Copyright terms: Public domain W3C validator