MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funisfsupp Structured version   Visualization version   GIF version

Theorem funisfsupp 8224
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
funisfsupp ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem funisfsupp
StepHypRef Expression
1 isfsupp 8223 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
213adant1 1077 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
3 ibar 525 . . . 4 (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43bicomd 213 . . 3 (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
543ad2ant1 1080 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
62, 5bitrd 268 1 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4613  Fun wfun 5841  (class class class)co 6604   supp csupp 7240  Fincfn 7899   finSupp cfsupp 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-rel 5081  df-cnv 5082  df-co 5083  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-fsupp 8220
This theorem is referenced by:  suppeqfsuppbi  8233  suppssfifsupp  8234  fsuppunbi  8240  0fsupp  8241  snopfsupp  8242  fsuppres  8244  resfsupp  8246  frnfsuppbi  8248  fsuppco  8251  sniffsupp  8259  cantnfp1lem1  8519  mptnn0fsupp  12737  dprdfadd  18340  lcomfsupp  18824  mplsubglem2  19355  ltbwe  19391  frlmbas  20018  frlmphllem  20038  frlmsslsp  20054  pmatcollpw2lem  20501  rrxmval  23096  eulerpartgbij  30215  pwfi2f1o  37146  fidmfisupp  38864  lcoc0  41499
  Copyright terms: Public domain W3C validator