MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfv Structured version   Visualization version   GIF version

Theorem funiunfv 6384
Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to 𝐹 Fn 𝐴, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

Assertion
Ref Expression
funiunfv (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funiunfv
StepHypRef Expression
1 funres 5825 . . . 4 (Fun 𝐹 → Fun (𝐹𝐴))
2 funfn 5815 . . . 4 (Fun (𝐹𝐴) ↔ (𝐹𝐴) Fn dom (𝐹𝐴))
31, 2sylib 206 . . 3 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
4 fniunfv 6383 . . 3 ((𝐹𝐴) Fn dom (𝐹𝐴) → 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) = ran (𝐹𝐴))
53, 4syl 17 . 2 (Fun 𝐹 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) = ran (𝐹𝐴))
6 undif2 3991 . . . . 5 (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = (dom (𝐹𝐴) ∪ 𝐴)
7 dmres 5322 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 inss1 3790 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
97, 8eqsstri 3593 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
10 ssequn1 3740 . . . . . 6 (dom (𝐹𝐴) ⊆ 𝐴 ↔ (dom (𝐹𝐴) ∪ 𝐴) = 𝐴)
119, 10mpbi 218 . . . . 5 (dom (𝐹𝐴) ∪ 𝐴) = 𝐴
126, 11eqtri 2627 . . . 4 (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = 𝐴
13 iuneq1 4460 . . . 4 ((dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = 𝐴 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥𝐴 ((𝐹𝐴)‘𝑥))
1412, 13ax-mp 5 . . 3 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥𝐴 ((𝐹𝐴)‘𝑥)
15 iunxun 4531 . . . 4 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥))
16 eldifn 3690 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴)) → ¬ 𝑥 ∈ dom (𝐹𝐴))
17 ndmfv 6109 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = ∅)
1816, 17syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝑥) = ∅)
1918iuneq2i 4465 . . . . . . 7 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥) = 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))∅
20 iun0 4502 . . . . . . 7 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))∅ = ∅
2119, 20eqtri 2627 . . . . . 6 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥) = ∅
2221uneq2i 3721 . . . . 5 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥)) = ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ ∅)
23 un0 3914 . . . . 5 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ ∅) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
2422, 23eqtri 2627 . . . 4 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥)) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
2515, 24eqtri 2627 . . 3 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
26 fvres 6098 . . . 4 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
2726iuneq2i 4465 . . 3 𝑥𝐴 ((𝐹𝐴)‘𝑥) = 𝑥𝐴 (𝐹𝑥)
2814, 25, 273eqtr3ri 2636 . 2 𝑥𝐴 (𝐹𝑥) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
29 df-ima 5037 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
3029unieqi 4371 . 2 (𝐹𝐴) = ran (𝐹𝐴)
315, 28, 303eqtr4g 2664 1 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1474  wcel 1975  cdif 3532  cun 3533  cin 3534  wss 3535  c0 3869   cuni 4362   ciun 4445  dom cdm 5024  ran crn 5025  cres 5026  cima 5027  Fun wfun 5780   Fn wfn 5781  cfv 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-fv 5794
This theorem is referenced by:  funiunfvf  6385  eluniima  6386  marypha2lem4  8200  r1limg  8490  r1elssi  8524  r1elss  8525  ackbij2  8921  r1om  8922  ttukeylem6  9192  isacs2  16079  mreacs  16084  acsfn  16085  isacs5  16937  dprdss  18193  dprd2dlem1  18205  dmdprdsplit2lem  18209  uniioombllem3a  23071  uniioombllem4  23073  uniioombllem5  23074  dyadmbl  23087  mblfinlem1  32415  ovoliunnfl  32420  voliunnfl  32422
  Copyright terms: Public domain W3C validator