MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopdmsn Structured version   Visualization version   GIF version

Theorem funopdmsn 6915
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopdmsn.g 𝐺 = ⟨𝑋, 𝑌
funopdmsn.x 𝑋𝑉
funopdmsn.y 𝑌𝑊
Assertion
Ref Expression
funopdmsn ((Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)

Proof of Theorem funopdmsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funopdmsn.g . . . . 5 𝐺 = ⟨𝑋, 𝑌
21funeqi 6379 . . . 4 (Fun 𝐺 ↔ Fun ⟨𝑋, 𝑌⟩)
3 funopdmsn.x . . . . . 6 𝑋𝑉
43elexi 3516 . . . . 5 𝑋 ∈ V
5 funopdmsn.y . . . . . 6 𝑌𝑊
65elexi 3516 . . . . 5 𝑌 ∈ V
74, 6funop 6914 . . . 4 (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}))
82, 7bitri 277 . . 3 (Fun 𝐺 ↔ ∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}))
91eqcomi 2833 . . . . . . 7 𝑋, 𝑌⟩ = 𝐺
109eqeq1i 2829 . . . . . 6 (⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩} ↔ 𝐺 = {⟨𝑥, 𝑥⟩})
11 dmeq 5775 . . . . . . . 8 (𝐺 = {⟨𝑥, 𝑥⟩} → dom 𝐺 = dom {⟨𝑥, 𝑥⟩})
12 vex 3500 . . . . . . . . 9 𝑥 ∈ V
1312dmsnop 6076 . . . . . . . 8 dom {⟨𝑥, 𝑥⟩} = {𝑥}
1411, 13syl6eq 2875 . . . . . . 7 (𝐺 = {⟨𝑥, 𝑥⟩} → dom 𝐺 = {𝑥})
15 eleq2 2904 . . . . . . . . 9 (dom 𝐺 = {𝑥} → (𝐴 ∈ dom 𝐺𝐴 ∈ {𝑥}))
16 eleq2 2904 . . . . . . . . 9 (dom 𝐺 = {𝑥} → (𝐵 ∈ dom 𝐺𝐵 ∈ {𝑥}))
1715, 16anbi12d 632 . . . . . . . 8 (dom 𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) ↔ (𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥})))
18 elsni 4587 . . . . . . . . 9 (𝐴 ∈ {𝑥} → 𝐴 = 𝑥)
19 elsni 4587 . . . . . . . . 9 (𝐵 ∈ {𝑥} → 𝐵 = 𝑥)
20 eqtr3 2846 . . . . . . . . 9 ((𝐴 = 𝑥𝐵 = 𝑥) → 𝐴 = 𝐵)
2118, 19, 20syl2an 597 . . . . . . . 8 ((𝐴 ∈ {𝑥} ∧ 𝐵 ∈ {𝑥}) → 𝐴 = 𝐵)
2217, 21syl6bi 255 . . . . . . 7 (dom 𝐺 = {𝑥} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2314, 22syl 17 . . . . . 6 (𝐺 = {⟨𝑥, 𝑥⟩} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2410, 23sylbi 219 . . . . 5 (⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩} → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2524adantl 484 . . . 4 ((𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}) → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
2625exlimiv 1930 . . 3 (∃𝑥(𝑋 = {𝑥} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑥, 𝑥⟩}) → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
278, 26sylbi 219 . 2 (Fun 𝐺 → ((𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵))
28273impib 1112 1 ((Fun 𝐺𝐴 ∈ dom 𝐺𝐵 ∈ dom 𝐺) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  {csn 4570  cop 4576  dom cdm 5558  Fun wfun 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366
This theorem is referenced by:  fundmge2nop0  13853
  Copyright terms: Public domain W3C validator