Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopfv Structured version   Visualization version   GIF version

Theorem funopfv 6028
 Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 4482 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funbrfv 6027 . 2 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
31, 2syl5bir 231 1 (Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1474   ∈ wcel 1938  ⟨cop 4034   class class class wbr 4481  Fun wfun 5683  ‘cfv 5689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-iota 5653  df-fun 5691  df-fv 5697 This theorem is referenced by:  fvopab3ig  6071  fvsn  6227  fveqf1o  6333  ovidig  6552  ovigg  6555  f1o2ndf1  7046  fundmen  7791  uzrdg0i  12487  uzrdgsuci  12488  strfvd  15614  strfv2d  15615  imasaddvallem  15902  imasvscafn  15910  adjeq  27967  bnj1379  30001  bnj97  30036  bnj553  30068  bnj966  30114  bnj1442  30217  basvtxval  40341  edgfiedgval  40342
 Copyright terms: Public domain W3C validator