![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsneqopsn | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is an ordered pair of equal singletons if the components are equal. (Contributed by AV, 24-Sep-2020.) |
Ref | Expression |
---|---|
funsndifnop.a | ⊢ 𝐴 ∈ V |
funsndifnop.b | ⊢ 𝐵 ∈ V |
funsndifnop.g | ⊢ 𝐺 = {〈𝐴, 𝐵〉} |
Ref | Expression |
---|---|
funsneqopsn | ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐴}, {𝐴}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4434 | . . . 4 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐴〉 = 〈𝐴, 𝐵〉) | |
2 | 1 | sneqd 4222 | . . 3 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐴〉} = {〈𝐴, 𝐵〉}) |
3 | funsndifnop.g | . . 3 ⊢ 𝐺 = {〈𝐴, 𝐵〉} | |
4 | 2, 3 | syl6reqr 2704 | . 2 ⊢ (𝐴 = 𝐵 → 𝐺 = {〈𝐴, 𝐴〉}) |
5 | eqid 2651 | . . . 4 ⊢ 𝐴 = 𝐴 | |
6 | eqid 2651 | . . . 4 ⊢ {𝐴} = {𝐴} | |
7 | 5, 6, 6 | 3pm3.2i 1259 | . . 3 ⊢ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}) |
8 | eqeq1 2655 | . . . 4 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → (𝐺 = 〈{𝐴}, {𝐴}〉 ↔ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉)) | |
9 | funsndifnop.a | . . . . 5 ⊢ 𝐴 ∈ V | |
10 | snex 4938 | . . . . 5 ⊢ {𝐴} ∈ V | |
11 | 9, 9, 10, 10 | snopeqop 4998 | . . . 4 ⊢ ({〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴})) |
12 | 8, 11 | syl6bb 276 | . . 3 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → (𝐺 = 〈{𝐴}, {𝐴}〉 ↔ (𝐴 = 𝐴 ∧ {𝐴} = {𝐴} ∧ {𝐴} = {𝐴}))) |
13 | 7, 12 | mpbiri 248 | . 2 ⊢ (𝐺 = {〈𝐴, 𝐴〉} → 𝐺 = 〈{𝐴}, {𝐴}〉) |
14 | 4, 13 | syl 17 | 1 ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐴}, {𝐴}〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 〈cop 4216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 |
This theorem is referenced by: funsneqop 6458 vtxvalsnop 25978 iedgvalsnop 25979 |
Copyright terms: Public domain | W3C validator |