![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funssxp | Structured version Visualization version GIF version |
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5956 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 206 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | rnss 5386 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
4 | rnxpss 5601 | . . . . . 6 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | syl6ss 3648 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
6 | 2, 5 | anim12i 589 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
7 | df-f 5930 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 6, 7 | sylibr 224 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹⟶𝐵) |
9 | dmss 5355 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵)) | |
10 | dmxpss 5600 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
11 | 9, 10 | syl6ss 3648 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ 𝐴) |
12 | 11 | adantl 481 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹 ⊆ 𝐴) |
13 | 8, 12 | jca 553 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
14 | ffun 6086 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) | |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → Fun 𝐹) |
16 | fssxp 6098 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × 𝐵)) | |
17 | xpss1 5161 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵)) | |
18 | 16, 17 | sylan9ss 3649 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → 𝐹 ⊆ (𝐴 × 𝐵)) |
19 | 15, 18 | jca 553 | . 2 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → (Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
20 | 13, 19 | impbii 199 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ⊆ wss 3607 × cxp 5141 dom cdm 5143 ran crn 5144 Fun wfun 5920 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 |
This theorem is referenced by: elpm2g 7916 volf 23343 |
Copyright terms: Public domain | W3C validator |