Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgredgfi Structured version   Visualization version   GIF version

Theorem fusgredgfi 26408
 Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 21-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
fusgredgfi ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉

Proof of Theorem fusgredgfi
StepHypRef Expression
1 fusgredgfi.e . . . 4 𝐸 = (Edg‘𝐺)
2 fvex 6354 . . . 4 (Edg‘𝐺) ∈ V
31, 2eqeltri 2827 . . 3 𝐸 ∈ V
4 rabexg 4955 . . 3 (𝐸 ∈ V → {𝑒𝐸𝑁𝑒} ∈ V)
53, 4mp1i 13 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ V)
6 fusgredgfi.v . . . . 5 𝑉 = (Vtx‘𝐺)
76isfusgr 26401 . . . 4 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
8 hashcl 13331 . . . . 5 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
98adantl 473 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (♯‘𝑉) ∈ ℕ0)
107, 9sylbi 207 . . 3 (𝐺 ∈ FinUSGraph → (♯‘𝑉) ∈ ℕ0)
1110adantr 472 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (♯‘𝑉) ∈ ℕ0)
12 fusgrusgr 26405 . . 3 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
136, 1usgredgleord 26316 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
1412, 13sylan 489 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉))
15 hashbnd 13309 . 2 (({𝑒𝐸𝑁𝑒} ∈ V ∧ (♯‘𝑉) ∈ ℕ0 ∧ (♯‘{𝑒𝐸𝑁𝑒}) ≤ (♯‘𝑉)) → {𝑒𝐸𝑁𝑒} ∈ Fin)
165, 11, 14, 15syl3anc 1473 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131  {crab 3046  Vcvv 3332   class class class wbr 4796  ‘cfv 6041  Fincfn 8113   ≤ cle 10259  ℕ0cn0 11476  ♯chash 13303  Vtxcvtx 26065  Edgcedg 26130  USGraphcusgr 26235  FinUSGraphcfusgr 26399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-hash 13304  df-edg 26131  df-upgr 26168  df-uspgr 26236  df-usgr 26237  df-fusgr 26400 This theorem is referenced by:  usgrfilem  26410
 Copyright terms: Public domain W3C validator