MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrn0degnn0 Structured version   Visualization version   GIF version

Theorem fusgrn0degnn0 27208
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.)
Hypothesis
Ref Expression
fusgrn0degnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrn0degnn0 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
Distinct variable groups:   𝑛,𝐺,𝑣   𝑣,𝑉
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fusgrn0degnn0
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4307 . . 3 (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘𝑉)
2 fusgrn0degnn0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32vtxdgfusgr 27207 . . . . 5 (𝐺 ∈ FinUSGraph → ∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0)
4 fveq2 6663 . . . . . . . 8 (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘))
54eleq1d 2894 . . . . . . 7 (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0))
65rspcv 3615 . . . . . 6 (𝑘𝑉 → (∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0))
7 risset 3264 . . . . . . . 8 (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))
8 fveqeq2 6672 . . . . . . . . . . . 12 (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛))
9 eqcom 2825 . . . . . . . . . . . 12 (((VtxDeg‘𝐺)‘𝑘) = 𝑛𝑛 = ((VtxDeg‘𝐺)‘𝑘))
108, 9syl6bb 288 . . . . . . . . . . 11 (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛𝑛 = ((VtxDeg‘𝐺)‘𝑘)))
1110rexbidv 3294 . . . . . . . . . 10 (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)))
1211rspcev 3620 . . . . . . . . 9 ((𝑘𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
1312expcom 414 . . . . . . . 8 (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘𝑉 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
147, 13sylbi 218 . . . . . . 7 (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘𝑉 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
1514com12 32 . . . . . 6 (𝑘𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
166, 15syld 47 . . . . 5 (𝑘𝑉 → (∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
173, 16syl5 34 . . . 4 (𝑘𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
1817exlimiv 1922 . . 3 (∃𝑘 𝑘𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
191, 18sylbi 218 . 2 (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
2019impcom 408 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  c0 4288  cfv 6348  0cn0 11885  Vtxcvtx 26708  FinUSGraphcfusgr 27025  VtxDegcvtxdg 27174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12881  df-hash 13679  df-vtx 26710  df-iedg 26711  df-edg 26760  df-uhgr 26770  df-upgr 26794  df-umgr 26795  df-uspgr 26862  df-usgr 26863  df-fusgr 27026  df-vtxdg 27175
This theorem is referenced by:  friendshipgt3  28104
  Copyright terms: Public domain W3C validator