MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrvtxfi Structured version   Visualization version   GIF version

Theorem fusgrvtxfi 26256
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrvtxfi (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)

Proof of Theorem fusgrvtxfi
StepHypRef Expression
1 isfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
21isfusgr 26255 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
32simprbi 479 1 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  cfv 5926  Fincfn 7997  Vtxcvtx 25919  USGraphcusgr 26089  FinUSGraphcfusgr 26253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-fusgr 26254
This theorem is referenced by:  fusgrfupgrfs  26268  nbfusgrlevtxm1  26323  nbfusgrlevtxm2  26324  nbusgrvtxm1  26325  uvtxnm1nbgr  26355  cusgrm1rusgr  26534  wlksnfi  26870  fusgrhashclwwlkn  27043  clwwlkndivn  27044  fusgreghash2wsp  27318  numclwwlk3lemOLD  27369  numclwwlk3lem  27371  numclwwlk4  27373
  Copyright terms: Public domain W3C validator