![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrvtxfi | Structured version Visualization version GIF version |
Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020.) |
Ref | Expression |
---|---|
isfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrvtxfi | ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isfusgr 26255 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | 2 | simprbi 479 | 1 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 Fincfn 7997 Vtxcvtx 25919 USGraphcusgr 26089 FinUSGraphcfusgr 26253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-fusgr 26254 |
This theorem is referenced by: fusgrfupgrfs 26268 nbfusgrlevtxm1 26323 nbfusgrlevtxm2 26324 nbusgrvtxm1 26325 uvtxnm1nbgr 26355 cusgrm1rusgr 26534 wlksnfi 26870 fusgrhashclwwlkn 27043 clwwlkndivn 27044 fusgreghash2wsp 27318 numclwwlk3lemOLD 27369 numclwwlk3lem 27371 numclwwlk4 27373 |
Copyright terms: Public domain | W3C validator |