MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv3 Structured version   Visualization version   GIF version

Theorem fv3 6101
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦

Proof of Theorem fv3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfv 6086 . . 3 (𝑥 ∈ (𝐹𝐴) ↔ ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
2 biimpr 209 . . . . . . . . . 10 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑦 = 𝑧𝐴𝐹𝑦))
32alimi 1730 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦))
4 vex 3176 . . . . . . . . . 10 𝑧 ∈ V
5 breq2 4582 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴𝐹𝑦𝐴𝐹𝑧))
64, 5ceqsalv 3206 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧)
73, 6sylib 207 . . . . . . . 8 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → 𝐴𝐹𝑧)
87anim2i 591 . . . . . . 7 ((𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (𝑥𝑧𝐴𝐹𝑧))
98eximi 1752 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧(𝑥𝑧𝐴𝐹𝑧))
10 elequ2 1991 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
11 breq2 4582 . . . . . . . 8 (𝑧 = 𝑦 → (𝐴𝐹𝑧𝐴𝐹𝑦))
1210, 11anbi12d 743 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝐴𝐹𝑧) ↔ (𝑥𝑦𝐴𝐹𝑦)))
1312cbvexv 2263 . . . . . 6 (∃𝑧(𝑥𝑧𝐴𝐹𝑧) ↔ ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
149, 13sylib 207 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
15 exsimpr 1784 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
16 df-eu 2462 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
1715, 16sylibr 223 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦)
1814, 17jca 553 . . . 4 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
19 nfeu1 2468 . . . . . . 7 𝑦∃!𝑦 𝐴𝐹𝑦
20 nfv 1830 . . . . . . . . 9 𝑦 𝑥𝑧
21 nfa1 2015 . . . . . . . . 9 𝑦𝑦(𝐴𝐹𝑦𝑦 = 𝑧)
2220, 21nfan 1816 . . . . . . . 8 𝑦(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2322nfex 2140 . . . . . . 7 𝑦𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2419, 23nfim 1813 . . . . . 6 𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
25 biimp 204 . . . . . . . . . . . . . 14 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦𝑦 = 𝑧))
26 ax9 1990 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2725, 26syl6 34 . . . . . . . . . . . . 13 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥𝑦𝑥𝑧)))
2827com23 84 . . . . . . . . . . . 12 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑦 → (𝐴𝐹𝑦𝑥𝑧)))
2928impd 446 . . . . . . . . . . 11 ((𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3029sps 2043 . . . . . . . . . 10 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3130anc2ri 579 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3231com12 32 . . . . . . . 8 ((𝑥𝑦𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3332eximdv 1833 . . . . . . 7 ((𝑥𝑦𝐴𝐹𝑦) → (∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3416, 33syl5bi 231 . . . . . 6 ((𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3524, 34exlimi 2073 . . . . 5 (∃𝑦(𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3635imp 444 . . . 4 ((∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
3718, 36impbii 198 . . 3 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
381, 37bitri 263 . 2 (𝑥 ∈ (𝐹𝐴) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
3938abbi2i 2725 1 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  {cab 2596   class class class wbr 4578  cfv 5790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-br 4579  df-iota 5754  df-fv 5798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator