MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco4i Structured version   Visualization version   GIF version

Theorem fvco4i 6756
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
fvco4i.a ∅ = (𝐹‘∅)
fvco4i.b Fun 𝐺
Assertion
Ref Expression
fvco4i ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))

Proof of Theorem fvco4i
StepHypRef Expression
1 fvco4i.b . . . 4 Fun 𝐺
2 funfn 6379 . . . 4 (Fun 𝐺𝐺 Fn dom 𝐺)
31, 2mpbi 232 . . 3 𝐺 Fn dom 𝐺
4 fvco2 6752 . . 3 ((𝐺 Fn dom 𝐺𝑋 ∈ dom 𝐺) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
53, 4mpan 688 . 2 (𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
6 fvco4i.a . . 3 ∅ = (𝐹‘∅)
7 dmcoss 5836 . . . . . 6 dom (𝐹𝐺) ⊆ dom 𝐺
87sseli 3962 . . . . 5 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ dom 𝐺)
98con3i 157 . . . 4 𝑋 ∈ dom 𝐺 → ¬ 𝑋 ∈ dom (𝐹𝐺))
10 ndmfv 6694 . . . 4 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)‘𝑋) = ∅)
119, 10syl 17 . . 3 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = ∅)
12 ndmfv 6694 . . . 4 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
1312fveq2d 6668 . . 3 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺𝑋)) = (𝐹‘∅))
146, 11, 133eqtr4a 2882 . 2 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
155, 14pm2.61i 184 1 ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2110  c0 4290  dom cdm 5549  ccom 5553  Fun wfun 6343   Fn wfn 6344  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by:  lidlval  19958  rspval  19959
  Copyright terms: Public domain W3C validator