![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco4i | Structured version Visualization version GIF version |
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
fvco4i.a | ⊢ ∅ = (𝐹‘∅) |
fvco4i.b | ⊢ Fun 𝐺 |
Ref | Expression |
---|---|
fvco4i | ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco4i.b | . . . 4 ⊢ Fun 𝐺 | |
2 | funfn 5956 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | 1, 2 | mpbi 220 | . . 3 ⊢ 𝐺 Fn dom 𝐺 |
4 | fvco2 6312 | . . 3 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
5 | 3, 4 | mpan 706 | . 2 ⊢ (𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
6 | fvco4i.a | . . 3 ⊢ ∅ = (𝐹‘∅) | |
7 | dmcoss 5417 | . . . . . 6 ⊢ dom (𝐹 ∘ 𝐺) ⊆ dom 𝐺 | |
8 | 7 | sseli 3632 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ dom 𝐺) |
9 | 8 | con3i 150 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
10 | ndmfv 6256 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) |
12 | ndmfv 6256 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
13 | 12 | fveq2d 6233 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺‘𝑋)) = (𝐹‘∅)) |
14 | 6, 11, 13 | 3eqtr4a 2711 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
15 | 5, 14 | pm2.61i 176 | 1 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 ∅c0 3948 dom cdm 5143 ∘ ccom 5147 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: lidlval 19240 rspval 19241 |
Copyright terms: Public domain | W3C validator |