Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Visualization version   GIF version

Theorem fveq12i 6357
 Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1 𝐹 = 𝐺
fveq12i.2 𝐴 = 𝐵
Assertion
Ref Expression
fveq12i (𝐹𝐴) = (𝐺𝐵)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3 𝐹 = 𝐺
21fveq1i 6353 . 2 (𝐹𝐴) = (𝐺𝐴)
3 fveq12i.2 . . 3 𝐴 = 𝐵
43fveq2i 6355 . 2 (𝐺𝐴) = (𝐺𝐵)
52, 4eqtri 2782 1 (𝐹𝐴) = (𝐺𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632  ‘cfv 6049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057 This theorem is referenced by:  cats1fvn  13803  sadcadd  15382  sadadd2  15384  coe1fzgsumdlem  19873  evl1gsumdlem  19922  madufval  20645  clwlkcompbp  26888  2wlkond  27057  1pthond  27296  3cycld  27330  kur14lem5  31499  bj-ndxarg  33335  fourierdlem62  40888  fouriersw  40951
 Copyright terms: Public domain W3C validator