![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveqres | Structured version Visualization version GIF version |
Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
fveqres | ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6366 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | fvres 6366 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | eqeq12d 2773 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |
4 | 3 | biimprd 238 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
5 | nfvres 6383 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
6 | nfvres 6383 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = ∅) | |
7 | 5, 6 | eqtr4d 2795 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
9 | 4, 8 | pm2.61i 176 | 1 ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1630 ∈ wcel 2137 ∅c0 4056 ↾ cres 5266 ‘cfv 6047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-xp 5270 df-dm 5274 df-res 5276 df-iota 6010 df-fv 6055 |
This theorem is referenced by: fvresex 7302 |
Copyright terms: Public domain | W3C validator |