MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvexi Structured version   Visualization version   GIF version

Theorem fvexi 6240
Description: The value of a class exists. Inference form of fvex 6239. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
fvexi.1 𝐴 = (𝐹𝐵)
Assertion
Ref Expression
fvexi 𝐴 ∈ V

Proof of Theorem fvexi
StepHypRef Expression
1 fvexi.1 . 2 𝐴 = (𝐹𝐵)
2 fvex 6239 . 2 (𝐹𝐵) ∈ V
31, 2eqeltri 2726 1 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  Vcvv 3231  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-sn 4211  df-pr 4213  df-uni 4469  df-iota 5889  df-fv 5934
This theorem is referenced by:  rmodislmod  18979  setsvtx  25972  usgredgffibi  26261  nbgr2vtx1edg  26291  nbuhgr2vtx1edgb  26293  nbfusgrlevtxm1  26323  nbfusgrlevtxm2  26324  uvtx01vtx  26346  cplgr1v  26382  vtxdginducedm1lem1  26491  vtxdginducedm1lem4  26494  vtxdginducedm1  26495  vtxdginducedm1fi  26496  finsumvtxdg2ssteplem4  26500  frgrwopreg1  27298  eulerpartlemgvv  30566  limsupequzmpt2  40268  climuzlem  40293  climisp  40296  climxrrelem  40299  climxrre  40300  limsupgtlem  40327  liminflelimsupuz  40335  liminfgelimsupuz  40338  liminfequzmpt2  40341  liminfvaluz  40342  limsupvaluz3  40348  climliminflimsupd  40351  liminfreuzlem  40352  liminfltlem  40354  liminflimsupclim  40357  xlimclim2lem  40383  climxlim2  40390  smflimmpt  41337  smflimsuplem4  41350  smflimsuplem6  41352  smflimsuplem8  41354  smfliminflem  41357  isupwlkg  42043
  Copyright terms: Public domain W3C validator