Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvilbd Structured version   Visualization version   GIF version

Theorem fvilbd 38501
Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.)
Hypothesis
Ref Expression
fvilbd.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
fvilbd (𝜑𝑅 ⊆ ( I ‘𝑅))

Proof of Theorem fvilbd
StepHypRef Expression
1 ssid 3765 . 2 𝑅𝑅
2 fvilbd.r . . 3 (𝜑𝑅 ∈ V)
3 fvi 6418 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
42, 3syl 17 . 2 (𝜑 → ( I ‘𝑅) = 𝑅)
51, 4syl5sseqr 3795 1 (𝜑𝑅 ⊆ ( I ‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715   I cid 5173  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator