Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnv Structured version   Visualization version   GIF version

Theorem fvimacnv 6298
 Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5940 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 6295 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 fvex 6168 . . . . . . 7 (𝐹𝐴) ∈ V
3 opelcnvg 5272 . . . . . . 7 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
42, 3mpan 705 . . . . . 6 (𝐴 ∈ dom 𝐹 → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
54adantl 482 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
61, 5mpbird 247 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹)
7 elimasng 5460 . . . . . 6 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
82, 7mpan 705 . . . . 5 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
98adantl 482 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
106, 9mpbird 247 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
112snss 4293 . . . . 5 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
12 imass2 5470 . . . . 5 ({(𝐹𝐴)} ⊆ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1311, 12sylbi 207 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1413sseld 3587 . . 3 ((𝐹𝐴) ∈ 𝐵 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵)))
1510, 14syl5com 31 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
16 fvimacnvi 6297 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1716ex 450 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1817adantr 481 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1915, 18impbid 202 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1987  Vcvv 3190   ⊆ wss 3560  {csn 4155  ⟨cop 4161  ◡ccnv 5083  dom cdm 5084   “ cima 5087  Fun wfun 5851  ‘cfv 5857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-fv 5865 This theorem is referenced by:  funimass3  6299  elpreima  6303  iinpreima  6311  isr0  21480  rnelfmlem  21696  rnelfm  21697  fmfnfmlem2  21699  fmfnfmlem4  21701  fmfnfm  21702  metustid  22299  metustsym  22300  metustexhalf  22301  xppreima  29332  dstfrvel  30358  ballotlemrv  30404  grpokerinj  33363  diaintclN  35866  dibintclN  35975  dihintcl  36152  arearect  37321  areaquad  37322
 Copyright terms: Public domain W3C validator