![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvinim0ffz | Structured version Visualization version GIF version |
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
Ref | Expression |
---|---|
fvinim0ffz | ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6083 | . . . . . 6 ⊢ (𝐹:(0...𝐾)⟶𝑉 → 𝐹 Fn (0...𝐾)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐹 Fn (0...𝐾)) |
3 | 0nn0 11345 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℕ0) |
5 | simpr 476 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
6 | nn0ge0 11356 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
7 | 6 | adantl 481 | . . . . . 6 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾) |
8 | elfz2nn0 12469 | . . . . . 6 ⊢ (0 ∈ (0...𝐾) ↔ (0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾)) | |
9 | 4, 5, 7, 8 | syl3anbrc 1265 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 0 ∈ (0...𝐾)) |
10 | id 22 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0) | |
11 | nn0re 11339 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
12 | 11 | leidd 10632 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ≤ 𝐾) |
13 | elfz2nn0 12469 | . . . . . . 7 ⊢ (𝐾 ∈ (0...𝐾) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝐾)) | |
14 | 10, 10, 12, 13 | syl3anbrc 1265 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ (0...𝐾)) |
15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ (0...𝐾)) |
16 | fnimapr 6301 | . . . . 5 ⊢ ((𝐹 Fn (0...𝐾) ∧ 0 ∈ (0...𝐾) ∧ 𝐾 ∈ (0...𝐾)) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) | |
17 | 2, 9, 15, 16 | syl3anc 1366 | . . . 4 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (𝐹 “ {0, 𝐾}) = {(𝐹‘0), (𝐹‘𝐾)}) |
18 | 17 | ineq1d 3846 | . . 3 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾)))) |
19 | 18 | eqeq1d 2653 | . 2 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅)) |
20 | disj 4050 | . . 3 ⊢ (({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾))) | |
21 | fvex 6239 | . . . 4 ⊢ (𝐹‘0) ∈ V | |
22 | fvex 6239 | . . . 4 ⊢ (𝐹‘𝐾) ∈ V | |
23 | eleq1 2718 | . . . . . 6 ⊢ (𝑣 = (𝐹‘0) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) | |
24 | 23 | notbid 307 | . . . . 5 ⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾)))) |
25 | df-nel 2927 | . . . . 5 ⊢ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘0) ∈ (𝐹 “ (1..^𝐾))) | |
26 | 24, 25 | syl6bbr 278 | . . . 4 ⊢ (𝑣 = (𝐹‘0) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘0) ∉ (𝐹 “ (1..^𝐾)))) |
27 | eleq1 2718 | . . . . . 6 ⊢ (𝑣 = (𝐹‘𝐾) → (𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) | |
28 | 27 | notbid 307 | . . . . 5 ⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾)))) |
29 | df-nel 2927 | . . . . 5 ⊢ ((𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)) ↔ ¬ (𝐹‘𝐾) ∈ (𝐹 “ (1..^𝐾))) | |
30 | 28, 29 | syl6bbr 278 | . . . 4 ⊢ (𝑣 = (𝐹‘𝐾) → (¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
31 | 21, 22, 26, 30 | ralpr 4270 | . . 3 ⊢ (∀𝑣 ∈ {(𝐹‘0), (𝐹‘𝐾)} ¬ 𝑣 ∈ (𝐹 “ (1..^𝐾)) ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
32 | 20, 31 | bitri 264 | . 2 ⊢ (({(𝐹‘0), (𝐹‘𝐾)} ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾)))) |
33 | 19, 32 | syl6bb 276 | 1 ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∉ wnel 2926 ∀wral 2941 ∩ cin 3606 ∅c0 3948 {cpr 4212 class class class wbr 4685 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 ≤ cle 10113 ℕ0cn0 11330 ...cfz 12364 ..^cfzo 12504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: injresinjlem 12628 pthdivtx 26681 pthdlem2 26720 |
Copyright terms: Public domain | W3C validator |