Proof of Theorem fvmptrabdm
Step | Hyp | Ref
| Expression |
1 | | fvmptrabdm.v |
. 2
⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) |
2 | | pm2.1 432 |
. 2
⊢ (¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) |
3 | | imor 427 |
. . 3
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) |
4 | | ordir 945 |
. . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹))) |
5 | | ndmfv 6379 |
. . . . . . 7
⊢ (¬
𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) |
6 | | ndmfv 6379 |
. . . . . . . . 9
⊢ (¬
𝑌 ∈ dom 𝐺 → (𝐺‘𝑌) = ∅) |
7 | 6 | rabeqdv 3334 |
. . . . . . . 8
⊢ (¬
𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
8 | | rab0 4098 |
. . . . . . . 8
⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ |
9 | 7, 8 | syl6req 2811 |
. . . . . . 7
⊢ (¬
𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
10 | 5, 9 | sylan9eq 2814 |
. . . . . 6
⊢ ((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
11 | | fvmptrabdm.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) |
12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑})) |
13 | | fvmptrabdm.r |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
14 | 13 | rabbidv 3329 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
15 | 14 | adantl 473 |
. . . . . . 7
⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑥 = 𝑋) → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
16 | 11 | dmmpt 5791 |
. . . . . . . . . 10
⊢ dom 𝐹 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} |
17 | | rabid2 3257 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥 ∈ 𝑉 {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) |
18 | | fvex 6362 |
. . . . . . . . . . . . 13
⊢ (𝐺‘𝑌) ∈ V |
19 | 18 | rabex 4964 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) |
21 | 17, 20 | mprgbir 3065 |
. . . . . . . . . 10
⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} |
22 | 16, 21 | eqtr4i 2785 |
. . . . . . . . 9
⊢ dom 𝐹 = 𝑉 |
23 | 22 | eleq2i 2831 |
. . . . . . . 8
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝑉) |
24 | 23 | biimpi 206 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
25 | 18 | rabex 4964 |
. . . . . . . 8
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V) |
27 | 12, 15, 24, 26 | fvmptd 6450 |
. . . . . 6
⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
28 | 10, 27 | jaoi 393 |
. . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
29 | 4, 28 | sylbir 225 |
. . . 4
⊢ (((¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
30 | 29 | expcom 450 |
. . 3
⊢ ((¬
𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) |
31 | 3, 30 | sylbi 207 |
. 2
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) |
32 | 1, 2, 31 | mp2 9 |
1
⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} |