MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab6 Structured version   Visualization version   GIF version

Theorem fvopab6 6350
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
fvopab6.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab6.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
fvopab6 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜓,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 3243 . . 3 (𝐴𝐷𝐴 ∈ V)
2 fvopab6.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
3 fvopab6.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
43eqeq2d 2661 . . . . 5 (𝑥 = 𝐴 → (𝑦 = 𝐵𝑦 = 𝐶))
52, 4anbi12d 747 . . . 4 (𝑥 = 𝐴 → ((𝜑𝑦 = 𝐵) ↔ (𝜓𝑦 = 𝐶)))
6 iba 523 . . . . 5 (𝑦 = 𝐶 → (𝜓 ↔ (𝜓𝑦 = 𝐶)))
76bicomd 213 . . . 4 (𝑦 = 𝐶 → ((𝜓𝑦 = 𝐶) ↔ 𝜓))
8 moeq 3415 . . . . . 6 ∃*𝑦 𝑦 = 𝐵
98moani 2554 . . . . 5 ∃*𝑦(𝜑𝑦 = 𝐵)
109a1i 11 . . . 4 (𝑥 ∈ V → ∃*𝑦(𝜑𝑦 = 𝐵))
11 fvopab6.1 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
12 vex 3234 . . . . . . 7 𝑥 ∈ V
1312biantrur 526 . . . . . 6 ((𝜑𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵)))
1413opabbii 4750 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
1511, 14eqtri 2673 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
165, 7, 10, 15fvopab3ig 6317 . . 3 ((𝐴 ∈ V ∧ 𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
171, 16sylan 487 . 2 ((𝐴𝐷𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
18173impia 1280 1 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  ∃*wmo 2499  Vcvv 3231  {copab 4745  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator