MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2g Structured version   Visualization version   GIF version

Theorem fvpr2g 6339
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr2g ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 4207 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
2 df-pr 4124 . . . . . 6 {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
31, 2eqtri 2628 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
43fveq1i 6086 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵)
5 fvunsn 6325 . . . 4 (𝐴𝐵 → (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
64, 5syl5eq 2652 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
763ad2ant3 1076 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
8 fvsng 6327 . . 3 ((𝐵𝑉𝐷𝑊) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
983adant3 1073 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
107, 9eqtrd 2640 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  wne 2776  cun 3534  {csn 4121  {cpr 4123  cop 4127  cfv 5787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-res 5037  df-iota 5751  df-fun 5789  df-fv 5795
This theorem is referenced by:  f1prex  6414  wrdlen2i  13477  constr1trl  25881  1pthon  25884  constr3lem4  25938  fpropnf1  40161  zlmodzxzscm  41927  zlmodzxzadd  41928  lincvalpr  42000  ldepspr  42055
  Copyright terms: Public domain W3C validator