![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresd | Structured version Visualization version GIF version |
Description: The value of a restricted function, deduction version of fvres 6368. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fvresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
fvresd | ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | fvres 6368 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ↾ cres 5268 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-res 5278 df-iota 6012 df-fv 6057 |
This theorem is referenced by: ackbij2lem2 9254 cfsmolem 9284 txkgen 21657 loglesqrt 24698 uhgrspansubgrlem 26381 wlkres 26777 ftc2re 30985 reprsuc 31002 frrlem4 32089 nolesgn2o 32130 nolesgn2ores 32131 noresle 32152 noprefixmo 32154 nosupres 32159 nosupbnd2lem1 32167 noetalem3 32171 limsupresxr 40501 liminfresxr 40502 sssmf 41453 |
Copyright terms: Public domain | W3C validator |