![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq0 | Structured version Visualization version GIF version |
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
fvreseq0 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6042 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fnssres 6042 | . . 3 ⊢ ((𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵) Fn 𝐵) | |
3 | eqfnfv 6351 | . . . 4 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥))) | |
4 | fvres 6245 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | fvres 6245 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝑥) = (𝐺‘𝑥)) | |
6 | 4, 5 | eqeq12d 2666 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 6 | ralbiia 3008 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ((𝐺 ↾ 𝐵)‘𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
8 | 3, 7 | syl6bb 276 | . . 3 ⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐺 ↾ 𝐵) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | 1, 2, 8 | syl2an 493 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝐺 Fn 𝐶 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
10 | 9 | an4s 886 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐶)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 ↾ cres 5145 Fn wfn 5921 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 |
This theorem is referenced by: fvreseq1 6358 fvreseq 6359 limsupequzlem 40272 |
Copyright terms: Public domain | W3C validator |