Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsingle Structured version   Visualization version   GIF version

Theorem fvsingle 33376
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
fvsingle (Singleton‘𝐴) = {𝐴}

Proof of Theorem fvsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . 4 (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴))
2 sneq 4570 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
31, 2eqeq12d 2837 . . 3 (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴}))
4 eqid 2821 . . . . 5 {𝑥} = {𝑥}
5 vex 3497 . . . . . 6 𝑥 ∈ V
6 snex 5323 . . . . . 6 {𝑥} ∈ V
75, 6brsingle 33373 . . . . 5 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
84, 7mpbir 233 . . . 4 𝑥Singleton{𝑥}
9 fnsingle 33375 . . . . 5 Singleton Fn V
10 fnbrfvb 6712 . . . . 5 ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}))
119, 5, 10mp2an 690 . . . 4 ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})
128, 11mpbir 233 . . 3 (Singleton‘𝑥) = {𝑥}
133, 12vtoclg 3567 . 2 (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
14 fvprc 6657 . . 3 𝐴 ∈ V → (Singleton‘𝐴) = ∅)
15 snprc 4646 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 218 . . 3 𝐴 ∈ V → {𝐴} = ∅)
1714, 16eqtr4d 2859 . 2 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
1813, 17pm2.61i 184 1 (Singleton‘𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290  {csn 4560   class class class wbr 5058   Fn wfn 6344  cfv 6349  Singletoncsingle 33294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-symdif 4218  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-eprel 5459  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-1st 7683  df-2nd 7684  df-txp 33310  df-singleton 33318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator