MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsn Structured version   Visualization version   GIF version

Theorem fvsn 6610
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion
Ref Expression
fvsn ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . . 3 𝐴 ∈ V
2 fvsn.2 . . 3 𝐵 ∈ V
31, 2funsn 6100 . 2 Fun {⟨𝐴, 𝐵⟩}
4 opex 5081 . . 3 𝐴, 𝐵⟩ ∈ V
54snid 4353 . 2 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩}
6 funopfv 6396 . 2 (Fun {⟨𝐴, 𝐵⟩} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵))
73, 5, 6mp2 9 1 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  Vcvv 3340  {csn 4321  cop 4327  Fun wfun 6043  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057
This theorem is referenced by:  fvsng  6611  fvsnun1  6612  fvpr1  6620  elixpsn  8113  mapsnen  8200  ac6sfi  8369  dcomex  9461  axdc3lem4  9467  0ram  15926  mdet0fv0  20602  chpmat0d  20841  imasdsf1olem  22379  axlowdimlem8  26028  axlowdimlem11  26031  subfacp1lem2a  31469  subfacp1lem5  31473  cvmliftlem4  31577  finixpnum  33707  poimirlem3  33725  fdc  33854  grposnOLD  33994
  Copyright terms: Public domain W3C validator