![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvunsn | Structured version Visualization version GIF version |
Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
fvunsn | ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resundir 5446 | . . . 4 ⊢ ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) | |
2 | nelsn 4245 | . . . . . . 7 ⊢ (𝐵 ≠ 𝐷 → ¬ 𝐵 ∈ {𝐷}) | |
3 | ressnop0 6460 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ {𝐷} → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐵 ≠ 𝐷 → ({〈𝐵, 𝐶〉} ↾ {𝐷}) = ∅) |
5 | 4 | uneq2d 3800 | . . . . 5 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅)) |
6 | un0 4000 | . . . . 5 ⊢ ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷}) | |
7 | 5, 6 | syl6eq 2701 | . . . 4 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({〈𝐵, 𝐶〉} ↾ {𝐷})) = (𝐴 ↾ {𝐷})) |
8 | 1, 7 | syl5eq 2697 | . . 3 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷}) = (𝐴 ↾ {𝐷})) |
9 | 8 | fveq1d 6231 | . 2 ⊢ (𝐵 ≠ 𝐷 → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷)) |
10 | fvressn 6469 | . . 3 ⊢ (𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) | |
11 | fvprc 6223 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ∅) | |
12 | fvprc 6223 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = ∅) | |
13 | 11, 12 | eqtr4d 2688 | . . 3 ⊢ (¬ 𝐷 ∈ V → (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷)) |
14 | 10, 13 | pm2.61i 176 | . 2 ⊢ (((𝐴 ∪ {〈𝐵, 𝐶〉}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) |
15 | fvressn 6469 | . . 3 ⊢ (𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) | |
16 | fvprc 6223 | . . . 4 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = ∅) | |
17 | fvprc 6223 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐴‘𝐷) = ∅) | |
18 | 16, 17 | eqtr4d 2688 | . . 3 ⊢ (¬ 𝐷 ∈ V → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷)) |
19 | 15, 18 | pm2.61i 176 | . 2 ⊢ ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴‘𝐷) |
20 | 9, 14, 19 | 3eqtr3g 2708 | 1 ⊢ (𝐵 ≠ 𝐷 → ((𝐴 ∪ {〈𝐵, 𝐶〉})‘𝐷) = (𝐴‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∪ cun 3605 ∅c0 3948 {csn 4210 〈cop 4216 ↾ cres 5145 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-res 5155 df-iota 5889 df-fv 5934 |
This theorem is referenced by: fvpr1 6497 fvpr1g 6499 fvpr2g 6500 fvtp1 6501 fvtp1g 6504 ac6sfi 8245 cats1un 13521 ruclem6 15008 ruclem7 15009 wlkp1lem5 26630 wlkp1lem6 26631 fnchoice 39502 nnsum4primeseven 42013 nnsum4primesevenALTV 42014 |
Copyright terms: Public domain | W3C validator |