![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzdisj | Structured version Visualization version GIF version |
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
fzdisj | ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3937 | . . . 4 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁))) | |
2 | elfzel1 12532 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 473 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | 3 | zred 11672 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
5 | elfzelz 12533 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
6 | 5 | zred 11672 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
7 | 6 | adantl 473 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
8 | elfzel2 12531 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ) | |
9 | 8 | adantr 472 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
10 | 9 | zred 11672 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ) |
11 | elfzle1 12535 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
12 | 11 | adantl 473 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
13 | elfzle2 12536 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ≤ 𝐾) | |
14 | 13 | adantr 472 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝐾) |
15 | 4, 7, 10, 12, 14 | letrd 10384 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐾) |
16 | 4, 10 | lenltd 10373 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑀)) |
17 | 15, 16 | mpbid 222 | . . . 4 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
18 | 1, 17 | sylbi 207 | . . 3 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
19 | 18 | con2i 134 | . 2 ⊢ (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁))) |
20 | 19 | eq0rdv 4120 | 1 ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∩ cin 3712 ∅c0 4056 class class class wbr 4802 (class class class)co 6811 ℝcr 10125 < clt 10264 ≤ cle 10265 ℤcz 11567 ...cfz 12517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-pre-lttri 10200 ax-pre-lttrn 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-1st 7331 df-2nd 7332 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-neg 10459 df-z 11568 df-uz 11878 df-fz 12518 |
This theorem is referenced by: fsumm1 14677 fsum1p 14679 o1fsum 14742 climcndslem1 14778 climcndslem2 14779 mertenslem1 14813 fprod1p 14895 fprodeq0 14902 fallfacval4 14971 prmreclem5 15824 strleun 16172 uniioombllem3 23551 mtest 24355 birthdaylem2 24876 fsumharmonic 24935 ftalem5 25000 chtdif 25081 ppidif 25086 gausslemma2dlem4 25291 gausslemma2dlem6 25294 lgsquadlem2 25303 dchrisum0lem1b 25401 dchrisum0lem3 25405 pntrsumbnd2 25453 pntrlog2bndlem6 25469 pntpbnd2 25473 pntlemf 25491 axlowdimlem2 26020 axlowdimlem16 26034 esumpmono 30448 ballotlemfrceq 30897 fsum2dsub 30992 poimirlem1 33721 poimirlem2 33722 poimirlem3 33723 poimirlem4 33724 poimirlem6 33726 poimirlem7 33727 poimirlem11 33731 poimirlem12 33732 poimirlem16 33736 poimirlem17 33737 poimirlem19 33739 poimirlem20 33740 poimirlem23 33743 poimirlem24 33744 poimirlem25 33745 poimirlem28 33748 poimirlem29 33749 poimirlem31 33751 eldioph2lem1 37823 stoweidlem11 40729 |
Copyright terms: Public domain | W3C validator |