MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdisj Structured version   Visualization version   GIF version

Theorem fzdisj 12559
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)

Proof of Theorem fzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3937 . . . 4 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)))
2 elfzel1 12532 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 473 . . . . . . 7 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
43zred 11672 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
5 elfzelz 12533 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
65zred 11672 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
76adantl 473 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
8 elfzel2 12531 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ)
98adantr 472 . . . . . . 7 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
109zred 11672 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ)
11 elfzle1 12535 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
1211adantl 473 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
13 elfzle2 12536 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝑥𝐾)
1413adantr 472 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐾)
154, 7, 10, 12, 14letrd 10384 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝐾)
164, 10lenltd 10373 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
1715, 16mpbid 222 . . . 4 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
181, 17sylbi 207 . . 3 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
1918con2i 134 . 2 (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)))
2019eq0rdv 4120 1 (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1630  wcel 2137  cin 3712  c0 4056   class class class wbr 4802  (class class class)co 6811  cr 10125   < clt 10264  cle 10265  cz 11567  ...cfz 12517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-pre-lttri 10200  ax-pre-lttrn 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-1st 7331  df-2nd 7332  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-neg 10459  df-z 11568  df-uz 11878  df-fz 12518
This theorem is referenced by:  fsumm1  14677  fsum1p  14679  o1fsum  14742  climcndslem1  14778  climcndslem2  14779  mertenslem1  14813  fprod1p  14895  fprodeq0  14902  fallfacval4  14971  prmreclem5  15824  strleun  16172  uniioombllem3  23551  mtest  24355  birthdaylem2  24876  fsumharmonic  24935  ftalem5  25000  chtdif  25081  ppidif  25086  gausslemma2dlem4  25291  gausslemma2dlem6  25294  lgsquadlem2  25303  dchrisum0lem1b  25401  dchrisum0lem3  25405  pntrsumbnd2  25453  pntrlog2bndlem6  25469  pntpbnd2  25473  pntlemf  25491  axlowdimlem2  26020  axlowdimlem16  26034  esumpmono  30448  ballotlemfrceq  30897  fsum2dsub  30992  poimirlem1  33721  poimirlem2  33722  poimirlem3  33723  poimirlem4  33724  poimirlem6  33726  poimirlem7  33727  poimirlem11  33731  poimirlem12  33732  poimirlem16  33736  poimirlem17  33737  poimirlem19  33739  poimirlem20  33740  poimirlem23  33743  poimirlem24  33744  poimirlem25  33745  poimirlem28  33748  poimirlem29  33749  poimirlem31  33751  eldioph2lem1  37823  stoweidlem11  40729
  Copyright terms: Public domain W3C validator