Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzisoeu Structured version   Visualization version   GIF version

Theorem fzisoeu 40005
Description: A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 13430 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fzisoeu.h (𝜑𝐻 ∈ Fin)
fzisoeu.or (𝜑 → < Or 𝐻)
fzisoeu.m (𝜑𝑀 ∈ ℤ)
fzisoeu.4 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
Assertion
Ref Expression
fzisoeu (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑀   𝑓,𝑁
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fzisoeu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 12528 . . . . . . . . 9 (𝑀...𝑁) ⊆ ℤ
2 zssre 11568 . . . . . . . . 9 ℤ ⊆ ℝ
31, 2sstri 3745 . . . . . . . 8 (𝑀...𝑁) ⊆ ℝ
4 ltso 10302 . . . . . . . 8 < Or ℝ
5 soss 5197 . . . . . . . 8 ((𝑀...𝑁) ⊆ ℝ → ( < Or ℝ → < Or (𝑀...𝑁)))
63, 4, 5mp2 9 . . . . . . 7 < Or (𝑀...𝑁)
7 fzfi 12957 . . . . . . 7 (𝑀...𝑁) ∈ Fin
8 fz1iso 13430 . . . . . . 7 (( < Or (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → ∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)))
96, 7, 8mp2an 710 . . . . . 6 Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁))
10 fzisoeu.4 . . . . . . . . . . . . . . . 16 𝑁 = ((♯‘𝐻) + (𝑀 − 1))
11 fveq2 6344 . . . . . . . . . . . . . . . . . 18 (𝐻 = ∅ → (♯‘𝐻) = (♯‘∅))
12 hash0 13342 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
1311, 12syl6eq 2802 . . . . . . . . . . . . . . . . 17 (𝐻 = ∅ → (♯‘𝐻) = 0)
1413oveq1d 6820 . . . . . . . . . . . . . . . 16 (𝐻 = ∅ → ((♯‘𝐻) + (𝑀 − 1)) = (0 + (𝑀 − 1)))
1510, 14syl5eq 2798 . . . . . . . . . . . . . . 15 (𝐻 = ∅ → 𝑁 = (0 + (𝑀 − 1)))
1615oveq2d 6821 . . . . . . . . . . . . . 14 (𝐻 = ∅ → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
1716adantl 473 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = (𝑀...(0 + (𝑀 − 1))))
18 fzisoeu.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
1918zcnd 11667 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
20 1cnd 10240 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
2119, 20subcld 10576 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℂ)
2221addid2d 10421 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑀 − 1)) = (𝑀 − 1))
2322oveq2d 6821 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = (𝑀...(𝑀 − 1)))
2418zred 11666 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
2524ltm1d 11140 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) < 𝑀)
26 peano2zm 11604 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2718, 26syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℤ)
28 fzn 12542 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
2918, 27, 28syl2anc 696 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3025, 29mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3123, 30eqtrd 2786 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(0 + (𝑀 − 1))) = ∅)
3231adantr 472 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → (𝑀...(0 + (𝑀 − 1))) = ∅)
33 eqcom 2759 . . . . . . . . . . . . . . 15 (𝐻 = ∅ ↔ ∅ = 𝐻)
3433biimpi 206 . . . . . . . . . . . . . 14 (𝐻 = ∅ → ∅ = 𝐻)
3534adantl 473 . . . . . . . . . . . . 13 ((𝜑𝐻 = ∅) → ∅ = 𝐻)
3617, 32, 353eqtrd 2790 . . . . . . . . . . . 12 ((𝜑𝐻 = ∅) → (𝑀...𝑁) = 𝐻)
3736fveq2d 6348 . . . . . . . . . . 11 ((𝜑𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
3820, 19pncan3d 10579 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝑀 − 1)) = 𝑀)
3938eqcomd 2758 . . . . . . . . . . . . . . . 16 (𝜑𝑀 = (1 + (𝑀 − 1)))
4039adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 = (1 + (𝑀 − 1)))
41 1red 10239 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ∈ ℝ)
42 neqne 2932 . . . . . . . . . . . . . . . . . . . 20 𝐻 = ∅ → 𝐻 ≠ ∅)
4342adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ≠ ∅)
44 fzisoeu.h . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐻 ∈ Fin)
4544adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝐻 ∈ Fin)
46 hashnncl 13341 . . . . . . . . . . . . . . . . . . . 20 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
4843, 47mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℕ)
4948nnred 11219 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘𝐻) ∈ ℝ)
5027zred 11666 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℝ)
5150adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑀 − 1) ∈ ℝ)
5248nnge1d 11247 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐻 = ∅) → 1 ≤ (♯‘𝐻))
5341, 49, 51, 52leadd1dd 10825 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ ((♯‘𝐻) + (𝑀 − 1)))
5453, 10syl6breqr 4838 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → (1 + (𝑀 − 1)) ≤ 𝑁)
5540, 54eqbrtrd 4818 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀𝑁)
5618adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑀 ∈ ℤ)
57 hashcl 13331 . . . . . . . . . . . . . . . . . . 19 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
58 nn0z 11584 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐻) ∈ ℕ0 → (♯‘𝐻) ∈ ℤ)
5944, 57, 583syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℤ)
6059, 27zaddcld 11670 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) + (𝑀 − 1)) ∈ ℤ)
6110, 60syl5eqel 2835 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
6261adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ ℤ)
63 eluz 11885 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6456, 62, 63syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐻 = ∅) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6555, 64mpbird 247 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐻 = ∅) → 𝑁 ∈ (ℤ𝑀))
66 hashfz 13398 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6765, 66syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = ((𝑁𝑀) + 1))
6810oveq1i 6815 . . . . . . . . . . . . . . . 16 (𝑁𝑀) = (((♯‘𝐻) + (𝑀 − 1)) − 𝑀)
6944, 57syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7069nn0cnd 11537 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝐻) ∈ ℂ)
7170, 21, 19addsubassd 10596 . . . . . . . . . . . . . . . 16 (𝜑 → (((♯‘𝐻) + (𝑀 − 1)) − 𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7268, 71syl5eq 2798 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)))
7319, 20negsubd 10582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 + -1) = (𝑀 − 1))
7473eqcomd 2758 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) = (𝑀 + -1))
7574oveq1d 6820 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀 − 1) − 𝑀) = ((𝑀 + -1) − 𝑀))
7620negcld 10563 . . . . . . . . . . . . . . . . . 18 (𝜑 → -1 ∈ ℂ)
7719, 76pncan2d 10578 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀 + -1) − 𝑀) = -1)
7875, 77eqtrd 2786 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) − 𝑀) = -1)
7978oveq2d 6821 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + ((𝑀 − 1) − 𝑀)) = ((♯‘𝐻) + -1))
8072, 79eqtrd 2786 . . . . . . . . . . . . . 14 (𝜑 → (𝑁𝑀) = ((♯‘𝐻) + -1))
8180oveq1d 6820 . . . . . . . . . . . . 13 (𝜑 → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8281adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → ((𝑁𝑀) + 1) = (((♯‘𝐻) + -1) + 1))
8370, 20negsubd 10582 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐻) + -1) = ((♯‘𝐻) − 1))
8483oveq1d 6820 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) + -1) + 1) = (((♯‘𝐻) − 1) + 1))
8570, 20npcand 10580 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
8684, 85eqtrd 2786 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8786adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐻 = ∅) → (((♯‘𝐻) + -1) + 1) = (♯‘𝐻))
8867, 82, 873eqtrd 2790 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐻 = ∅) → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
8937, 88pm2.61dan 867 . . . . . . . . . 10 (𝜑 → (♯‘(𝑀...𝑁)) = (♯‘𝐻))
9089oveq2d 6821 . . . . . . . . 9 (𝜑 → (1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)))
91 isoeq4 6725 . . . . . . . . 9 ((1...(♯‘(𝑀...𝑁))) = (1...(♯‘𝐻)) → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9290, 91syl 17 . . . . . . . 8 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) ↔ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9392biimpd 219 . . . . . . 7 (𝜑 → ( Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
9493eximdv 1987 . . . . . 6 (𝜑 → (∃ Isom < , < ((1...(♯‘(𝑀...𝑁))), (𝑀...𝑁)) → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁))))
959, 94mpi 20 . . . . 5 (𝜑 → ∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)))
96 fzisoeu.or . . . . . 6 (𝜑 → < Or 𝐻)
97 fz1iso 13430 . . . . . 6 (( < Or 𝐻𝐻 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
9896, 44, 97syl2anc 696 . . . . 5 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
99 eeanv 2319 . . . . 5 (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) ↔ (∃ Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
10095, 98, 99sylanbrc 701 . . . 4 (𝜑 → ∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)))
101 isocnv 6735 . . . . . . . 8 ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
102101ad2antrl 766 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))))
103 simprr 813 . . . . . . 7 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))
104 isotr 6741 . . . . . . 7 (( Isom < , < ((𝑀...𝑁), (1...(♯‘𝐻))) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
105102, 103, 104syl2anc 696 . . . . . 6 ((𝜑 ∧ ( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻))) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
106105ex 449 . . . . 5 (𝜑 → (( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
1071062eximdv 1989 . . . 4 (𝜑 → (∃𝑔( Isom < , < ((1...(♯‘𝐻)), (𝑀...𝑁)) ∧ 𝑔 Isom < , < ((1...(♯‘𝐻)), 𝐻)) → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
108100, 107mpd 15 . . 3 (𝜑 → ∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻))
109 vex 3335 . . . . . . 7 𝑔 ∈ V
110 vex 3335 . . . . . . . 8 ∈ V
111110cnvex 7270 . . . . . . 7 ∈ V
112109, 111coex 7275 . . . . . 6 (𝑔) ∈ V
113 isoeq1 6722 . . . . . 6 (𝑓 = (𝑔) → (𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (𝑔) Isom < , < ((𝑀...𝑁), 𝐻)))
114112, 113spcev 3432 . . . . 5 ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
115114a1i 11 . . . 4 (𝜑 → ((𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
116115exlimdvv 2003 . . 3 (𝜑 → (∃𝑔(𝑔) Isom < , < ((𝑀...𝑁), 𝐻) → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
117108, 116mpd 15 . 2 (𝜑 → ∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
118 ltwefz 12948 . . 3 < We (𝑀...𝑁)
119 wemoiso 7310 . . 3 ( < We (𝑀...𝑁) → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
120118, 119mp1i 13 . 2 (𝜑 → ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
121 eu5 2625 . 2 (∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ↔ (∃𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻) ∧ ∃*𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻)))
122117, 120, 121sylanbrc 701 1 (𝜑 → ∃!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wex 1845  wcel 2131  ∃!weu 2599  ∃*wmo 2600  wne 2924  wss 3707  c0 4050   class class class wbr 4796   Or wor 5178   We wwe 5216  ccnv 5257  ccom 5262  cfv 6041   Isom wiso 6042  (class class class)co 6805  Fincfn 8113  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   < clt 10258  cle 10259  cmin 10450  -cneg 10451  cn 11204  0cn0 11476  cz 11561  cuz 11871  ...cfz 12511  chash 13303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-hash 13304
This theorem is referenced by:  fourierdlem36  40855
  Copyright terms: Public domain W3C validator