MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznatpl1 Structured version   Visualization version   GIF version

Theorem fznatpl1 12964
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
Assertion
Ref Expression
fznatpl1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))

Proof of Theorem fznatpl1
StepHypRef Expression
1 1red 10645 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ℝ)
2 elfzelz 12911 . . . . . 6 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
32zred 12090 . . . . 5 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
43adantl 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ℝ)
5 peano2re 10816 . . . 4 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
64, 5syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ)
7 peano2re 10816 . . . . 5 (1 ∈ ℝ → (1 + 1) ∈ ℝ)
81, 7syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ∈ ℝ)
91ltp1d 11573 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (1 + 1))
10 elfzle1 12913 . . . . . 6 (𝐼 ∈ (1...(𝑁 − 1)) → 1 ≤ 𝐼)
1110adantl 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ 𝐼)
12 1re 10644 . . . . . . 7 1 ∈ ℝ
13 leadd1 11111 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
1412, 12, 13mp3an13 1448 . . . . . 6 (𝐼 ∈ ℝ → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
154, 14syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 ≤ 𝐼 ↔ (1 + 1) ≤ (𝐼 + 1)))
1611, 15mpbid 234 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (1 + 1) ≤ (𝐼 + 1))
171, 8, 6, 9, 16ltletrd 10803 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 < (𝐼 + 1))
181, 6, 17ltled 10791 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ≤ (𝐼 + 1))
19 elfzle2 12914 . . . 4 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1))
2019adantl 484 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1))
21 nnz 12007 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2221adantr 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℤ)
2322zred 12090 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℝ)
24 leaddsub 11119 . . . . 5 ((𝐼 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
2512, 24mp3an2 1445 . . . 4 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
263, 23, 25syl2an2 684 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ≤ 𝑁𝐼 ≤ (𝑁 − 1)))
2720, 26mpbird 259 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ≤ 𝑁)
282peano2zd 12093 . . 3 (𝐼 ∈ (1...(𝑁 − 1)) → (𝐼 + 1) ∈ ℤ)
29 1z 12015 . . . 4 1 ∈ ℤ
30 elfz 12901 . . . 4 (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3129, 30mp3an2 1445 . . 3 (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3228, 22, 31syl2an2 684 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ((𝐼 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝑁)))
3318, 27, 32mpbir2and 711 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2113   class class class wbr 5069  (class class class)co 7159  cr 10539  1c1 10541   + caddc 10543  cle 10679  cmin 10873  cn 11641  cz 11984  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by:  axlowdimlem10  26740  axlowdimlem14  26744  1smat1  31073  madjusmdetlem2  31097
  Copyright terms: Public domain W3C validator