Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzneuz Structured version   Visualization version   GIF version

Theorem fzneuz 12459
 Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
Assertion
Ref Expression
fzneuz ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))

Proof of Theorem fzneuz
StepHypRef Expression
1 peano2uz 11779 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (𝑁 + 1) ∈ (ℤ𝐾))
21adantl 481 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑁 + 1) ∈ (ℤ𝐾))
3 eluzelre 11736 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
4 ltp1 10899 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
5 peano2re 10247 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6 ltnle 10155 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
75, 6mpdan 703 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
84, 7mpbid 222 . . . . . . 7 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
93, 8syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ≤ 𝑁)
10 elfzle2 12383 . . . . . 6 ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁)
119, 10nsyl 135 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
1211ad2antrr 762 . . . 4 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
13 nelneq2 2755 . . . 4 (((𝑁 + 1) ∈ (ℤ𝐾) ∧ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
142, 12, 13syl2anc 694 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (ℤ𝐾) = (𝑀...𝑁))
15 eqcom 2658 . . 3 ((ℤ𝐾) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (ℤ𝐾))
1614, 15sylnib 317 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
17 eluzfz2 12387 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
1817ad2antrr 762 . . 3 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (𝑀...𝑁))
19 nelneq2 2755 . . 3 ((𝑁 ∈ (𝑀...𝑁) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
2018, 19sylancom 702 . 2 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝑁 ∈ (ℤ𝐾)) → ¬ (𝑀...𝑁) = (ℤ𝐾))
2116, 20pm2.61dan 849 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator