MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to2pr Structured version   Visualization version   GIF version

Theorem fzo0to2pr 12593
Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fzo0to2pr (0..^2) = {0, 1}

Proof of Theorem fzo0to2pr
StepHypRef Expression
1 2z 11447 . . 3 2 ∈ ℤ
2 fzoval 12510 . . 3 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
31, 2ax-mp 5 . 2 (0..^2) = (0...(2 − 1))
4 2m1e1 11173 . . . 4 (2 − 1) = 1
5 0p1e1 11170 . . . 4 (0 + 1) = 1
64, 5eqtr4i 2676 . . 3 (2 − 1) = (0 + 1)
76oveq2i 6701 . 2 (0...(2 − 1)) = (0...(0 + 1))
8 0z 11426 . . 3 0 ∈ ℤ
9 fzpr 12434 . . . 4 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
105preq2i 4304 . . . 4 {0, (0 + 1)} = {0, 1}
119, 10syl6eq 2701 . . 3 (0 ∈ ℤ → (0...(0 + 1)) = {0, 1})
128, 11ax-mp 5 . 2 (0...(0 + 1)) = {0, 1}
133, 7, 123eqtri 2677 1 (0..^2) = {0, 1}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  {cpr 4212  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  cmin 10304  2c2 11108  cz 11415  ...cfz 12364  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  fzo0to42pr  12595  s2dm  13681  wrdlen2i  13732  wrd2pr2op  13733  wwlktovf1  13746  bitsinv1lem  15210  upgr2wlk  26620  usgr2wlkneq  26708  usgr2trlncl  26712  usgr2pthlem  26715  usgr2pth  26716  uspgrn2crct  26756  2wlkdlem2  26891  umgrwwlks2on  26923  2clwwlk2clwwlklem2lem2  27329  lmat22lem  30011  eulerpartlemd  30556  prodfzo03  30809  elmod2  41665  pfx2  41737
  Copyright terms: Public domain W3C validator