MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzof Structured version   Visualization version   GIF version

Theorem fzof 13029
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzof ..^:(ℤ × ℤ)⟶𝒫 ℤ

Proof of Theorem fzof
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 12903 . . . 4 (𝑚...(𝑛 − 1)) ⊆ ℤ
2 ovex 7183 . . . . 5 (𝑚...(𝑛 − 1)) ∈ V
32elpw 4545 . . . 4 ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ)
41, 3mpbir 233 . . 3 (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
54rgen2w 3151 . 2 𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
6 df-fzo 13028 . . 3 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
76fmpo 7760 . 2 (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ)
85, 7mpbi 232 1 ..^:(ℤ × ℤ)⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  wral 3138  wss 3935  𝒫 cpw 4538   × cxp 5547  wf 6345  (class class class)co 7150  1c1 10532  cmin 10864  cz 11975  ...cfz 12886  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-neg 10867  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028
This theorem is referenced by:  elfzoel1  13030  elfzoel2  13031  elfzoelz  13032  fzoval  13033  fzofi  13336
  Copyright terms: Public domain W3C validator