Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzosplitpr Structured version   Visualization version   GIF version

Theorem fzosplitpr 40662
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitpr (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))

Proof of Theorem fzosplitpr
StepHypRef Expression
1 df-2 11031 . . . . . 6 2 = (1 + 1)
21a1i 11 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 2 = (1 + 1))
32oveq2d 6626 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1)))
4 eluzelcn 11651 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
5 1cnd 10008 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
6 add32r 10207 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
74, 5, 5, 6syl3anc 1323 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
83, 7eqtrd 2655 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1))
98oveq2d 6626 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1)))
10 peano2uz 11693 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 1) ∈ (ℤ𝐴))
11 fzosplitsn 12525 . . 3 ((𝐵 + 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
1210, 11syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
13 fzosplitsn 12525 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
1413uneq1d 3749 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}))
15 unass 3753 . . . 4 (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))
1615a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})))
17 df-pr 4156 . . . . . 6 {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)})
1817eqcomi 2630 . . . . 5 ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}
1918a1i 11 . . . 4 (𝐵 ∈ (ℤ𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)})
2019uneq2d 3750 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
2114, 16, 203eqtrd 2659 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
229, 12, 213eqtrd 2659 1 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cun 3557  {csn 4153  {cpr 4155  cfv 5852  (class class class)co 6610  cc 9886  1c1 9889   + caddc 9891  2c2 11022  cuz 11639  ..^cfzo 12414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator