MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoun Structured version   Visualization version   GIF version

Theorem fzoun 13068
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
fzoun ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))

Proof of Theorem fzoun
StepHypRef Expression
1 eluzel2 12242 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 eluzelz 12247 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
4 nn0z 11999 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
5 zaddcl 12016 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
63, 4, 5syl2an 597 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐵 + 𝐶) ∈ ℤ)
73adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
82, 6, 73jca 1124 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ))
9 eluzle 12250 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴𝐵)
109adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴𝐵)
11 nn0ge0 11916 . . . . . 6 (𝐶 ∈ ℕ0 → 0 ≤ 𝐶)
1211adantl 484 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
13 eluzelre 12248 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
14 nn0re 11900 . . . . . 6 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
15 addge01 11144 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1613, 14, 15syl2an 597 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1712, 16mpbid 234 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ≤ (𝐵 + 𝐶))
1810, 17jca 514 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶)))
19 elfz2 12893 . . 3 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) ↔ ((𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶))))
208, 18, 19sylanbrc 585 . 2 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ (𝐴...(𝐵 + 𝐶)))
21 fzosplit 13064 . 2 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
2220, 21syl 17 1 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cun 3933   class class class wbr 5058  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531   + caddc 10534  cle 10670  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028
This theorem is referenced by:  clwwlkccatlem  27761
  Copyright terms: Public domain W3C validator