MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzp1nel Structured version   Visualization version   GIF version

Theorem fzp1nel 12365
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
Assertion
Ref Expression
fzp1nel ¬ (𝑁 + 1) ∈ (𝑀...𝑁)

Proof of Theorem fzp1nel
StepHypRef Expression
1 zre 11325 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 ltp1 10805 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
3 id 22 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 peano2re 10153 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
53, 4ltnled 10128 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
62, 5mpbid 222 . . . . 5 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
71, 6syl 17 . . . 4 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁)
87intnand 961 . . 3 (𝑁 ∈ ℤ → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
983ad2ant2 1081 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
10 elfz2 12275 . . . 4 ((𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1110notbii 310 . . 3 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
12 imnan 438 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1311, 12bitr4i 267 . 2 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
149, 13mpbir 221 1 ¬ (𝑁 + 1) ∈ (𝑀...𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cz 11321  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-z 11322  df-fz 12269
This theorem is referenced by:  fprodm1  14622  gsumzaddlem  18242  wlkp1lem1  26439  wlkp1lem5  26443  fwddifnp1  31911  caratheodorylem1  40044
  Copyright terms: Public domain W3C validator